Abstract:18F-FDG PET-CT is recommended for the diagnosis and treatment of non-small cell lung cancer (NSCLC),and guiding the optimization of radiotherapy planning. The target area determined by biological information carried by functional images is defined as biological target volume (BTV). However,BTV significantly differs from the gross tumor volume (GTV) and internal target volume (ITV) defined by the International Commission on Radiation Units and Measurements (ICRU) report. It is still a challenging task to directly apply BTV to radiotherapy planning. The limitation of PET image,the accuracy of fusion with auxiliary anatomic images and the influence of respiratory movement cause the uncertainty of BTV definition in NSCLC patients. Referring to different anatomical images,multiple approaches can be employed to achieve BTV motion information compensation. Application of PET-CT in predicting the prognosis of NSCLC patients after radiotherapy and distinguishing the recurrence risk of biological sub-target contribute to achieving the dose planning for radiotherapy planning.
Zhang Yingjie,Li Jianbin. Research progress on PET-CT in radiotherapy planning for non-small cell lung cancer[J]. Chinese Journal of Radiation Oncology, 2019, 28(11): 876-880.
[1] Bradley J,Thorstad WL,Mutic S,et al. Impact of FDG-PET on radiation therapy volume delineation in non-small cell lung cancer[J]. Int J Radiat Oncol Biol Phys,2004,59(1):78-86. DOI:10.1016/j.ijrobp.2003.10.044. [2] Devic S,Tomic N,Faria S,et al. Defining radiotherapy target volumes using 18F-fluoro-deoxy-glucose positron emission tomography/computed tomography:still a Pandora′s box?[J]. Int J Radiat Oncol Biol Phys,2010,78(5):1555-1562. DOI:10.1016/j.ijrobp.2010.02.015. [3] Nestle U,Kremp S,Schaefer-Schuler A,Sebastian-Welsch C,et al. Comparison of different methods for delineation of 18F-FDG PET-positive tissue for target volume definition in radiotherapy of patients with non-Small cell lung cancer[J]. J Nucl Med,2005,46(8):1342-1348. DOI:10.1016/j.ejpain.2007.03.222. [4] Biehl KJ,Kong FM,Dehdashti F,et al.18F-FDG PET definition of gross tumor volume for radiotherapy of non-small cell lung cancer:is a single standardized uptake value threshold approach appropriate?[J]. J Nucl Med,2006,47(11):1808-1812. DOI:10.1016/j.ijrobp.2006.07.306. [5] Kruis MF,van de Kamer JB,Vogel WV,et al. Clinical evaluation of respiration-induced attenuation uncertainties in pulmonary 3D PET/CT[J]. EJNMMI Phys,2015,2(1):4. DOI:10.1186/s40658-014-0107-7. [6] Lu Y,Fontaine K,Mulnix T,et al. Respiratory motion compensation for PET/CT with motion information derived from matched attenuation corrected gated PET data[J]. J Nucl Med,2018,59(9):1480-1486. DOI:10.2967/jnumed.117.203000. [7] Fortin D,Basran PS,Berrang T,et al. Deformable versus rigid registration of PET/CT images for radiation treatment planning of head and neck and lung cancer patients:a retrospective dosimetric comparison[J]. Radiat Oncol,2014,9(1):50. DOI:10.1186/1748-717X-9-50. [8] Konert T,Vogel W,MacManus MP,et al. PET/CT imaging for target volume delineation in curative intent radiotherapy of non-small cell lung cancer:IAEA consensus report 2014[J]. Radiother Oncol,2015,116(1):27-34. DOI:10.1016/j.radonc.2015.03.014. [9] Groheux D,Quere G,Blanc E,et al. FDG PET-CT for solitary pulmonary nodule and lung cancer:literature review[J]. Diagn Interv Imag,2016,97(10):1003-1017. DOI:10.1016/j.diii.2016.06.020. [10] Madsen PH,Holdgaard PC,Christensen JB,et al. Clinical utility of F-18 FDG PET-CT in the initial evaluation of lung cancer[J]. Eur J Nucl Med Mol Imag,2016,43(11):2084-2097. DOI:10.1007/s00259-016-3407-4. [11] Qureshi NR,Shah A,Eaton RJ,et al. Dynamic contrast enhanced CT in nodule characterization:How we review and report[J]. Cancer Imag,2016,16(1):16. DOI:10.1186/s40644-016-0074-4. [12] Kruis MF,van de Kamer JB,Houweling AC,et al. PET motion compensation for radiation therapy using a CT-based mid-position motion model:methodology and clinical evaluation[J]. Int J Radiat Oncol Biol Phys,2013,87(2):394-400. DOI:10.1016/j.ijrobp.2013.06.007. [13] Callahan J,Kron T,Schneider-Kolsky M,et al. Validation of a 4D-PET maximum intensity projection for delineation of an internal target volume[J]. Int J Radiat Oncol Biol Phys,2013,86(4):749-754. DOI:10.1016/j.ijrobp.2013.02.030. [14] Duan Y,Li J,Zhang Y,et al. Comparison of primary tumour volumes delineated on four-dimensional computed tomography maximum intensity projection and (18) F-fluorodeoxyglucose positron emission tomography computed tomography images of non-small cell lung cancer[J]. J Med Imaging Radiat Oncol,2015,59(5):623-630. DOI:10.1111/1754-9485.12295. [15] Yu J,Li X,Xing L,et al. Comparison of tumor volumes as determined by pathologic examination and FDG-PET/CT images of non-small-cell lung cancer:a pilot study[J]. Int J Radiat Oncol Biol Phys,2009,75(5):1468-1474. DOI:10.1016/j.ijrobp.2009.01.019. [16] Aristophanous M,Berbeco RI,Killoran JH,et al. Clinical utility of 4DFDG-PET/CT scans in radiation treatment planning[J]. Int J Radiat Oncol Biol Phys,2012,82(1):e99-105. DOI:10.1016/j.ijrobp.2010.12.060. [17] Callahan J,Kron T,Siva S,et al. Geographic miss of lung tumours due to respiratory motion:a comparison of 3D vs. 4D PET/CT defined target volumes[J]. Radiat Oncol,2014,9(2):291-296. DOI:10.1186/s13014-014-0291-6. [18] Ho CY,Wu TH,Mok GS. Interpolated average CT for PET attenuation correction in different lesion characteristics[J]. Nucl Med Commun,2016,37(3):297-306. DOI:10.1097/MNM.0000000000000435. [19] Riegel AC,Bucci MK,Mawlawi OR,et al. Defining internal target volume using positron emission tomography for radiation therapy planning of moving lung tumors[J]. J Appl Clin Med Phys,2014,15(1):4600. DOI:10.1120/jacmp.v15i1.4600. [20] Zhang Y,Li J,Duan Y,et al. Comparison of biological target volume metrics based on FDG PET-CT and 4DCT for primary non-small-cell lung cancer[J]. Oncotarget,2017,8(45):79629-79635. DOI:10.18632/oncotarget.18917. [21] Molla M,Anducas N,Simó M,et al. A comparative study of the target volume definition in radiotherapy with Slow CT Scan vs.4D PET/CT Scan in early stages non-small cell lung cancer[J]. Rev Esp Med Nucl Imagen Mol,2016,35(6):373-378. DOI:10.1016/j.remn.2016.02.003. [22] Callahan J,Kron T,Schneider-Kolsky M,et al. Validation of a 4D-PET maximum intensity projection for delineation of an internal target volume[J]. Int J Radiat Oncol Biol Phys,2013,86(4):749-754. DOI:10.1016/j.ijrobp.2013.02.030. [23] Siva S,Chesson B,Callahan JW,et al. Dosimetric consequences of 3D versus 4D PET/CT for target Delineation of Lung Stereotactic Radiotherapy[J]. J Thorac Oncol,2015,10(7):1112-1115. DOI:10.1097/JTO.0000000000000555. [24] Clarke K,Taremi M,Dahele M,et al. Stereotacticbody radiotherapy (SBRT) for non-small cell lung cancer (NSCLC):is FDG-PETa predictor of outcome?[J]. Radiother Oncol,2012,104(1):62-66. DOI:10.1016/j.radonc.2012.04.019. [25] Takeda A,Sanuki N,Fujii H,et al. Maximum standardized uptake value on FDG-PET is a strong predictor of overall anddisease-free survival for non-small-cell lung cancer patients after stereotacticbody radiotherapy[J]. J Thorac Oncol,2014,9(1):65-73. DOI:10.1097/jto.0000000000000031. [26] Burdick MJ,Stephans KL,Reddy CA,et al. Max-imum standardized uptake value from staging FDG-PET/CT does not predicttreatment outcome for early-stage non-small-cell lung cancer treated withstereotactic body radiotherapy[J]. Int J Radiat Oncol Biol Phys,2010,78(4):1033-1039. DOI:10.1016/j.ijrobp.2009.09.081. [27] Matsuo Y,Matsuo Y,Umeoka S,et al. Prediction of clinical outcome after stereotactic body radiotherapy for non-small cell lung cancer using diffusion-weighted MRI and (18) F-FDG PET[J]. Eur J Radiol,2014,83(11):2087-2092. DOI:10.1016/j.ejrad.2014.07.018. [28] Na F,Wang J,Li C,et al. Primary tumor standardized uptake value measured on F18-Fluorodeoxyglucose positron emission tomography is of prediction value for survival and local control in non-small-cell lung cancer receiving radiotherapy:meta-analysis[J]. J Thorac Oncol,2014,9(6):834-842. DOI:10.1097/JTO.0000000000000185. [29] Vera P,Mezzani-Saillard S,Edet-Sanson A,et al. FDG PET during radiochemotherapy is predictive of outcome at 1 year in non-small-cell lung cancer patients:a prospective multicentre study (RTEP2)[J]. Eur J Nucl Med Mol Imag,2014,41:1057-1065. DOI:10.1007/s00259-014-2687-9. [30] Huang W,Fan M,Liu B,et al. Value of Metabolic tumor volume on repeated 18F-FDG PET/CT for early prediction of survival in locally advanced non-small cell lung cancer treated with concurrent chemoradiotherapy[J]. J Nucl Med,2014,55(10):1584-1590. DOI:10.2967/jnumed.114.142919. [31] Aerts HJ,van Baardwijk AA,Petit SF,et al. Identification of residual metabolic-active areas within individual NSCLC tumours using a pre-radiotherapy (18) Fluorodeoxyglucose-PET-CT scan[J]. Radiother Oncol,2009,91(3):386-392. DOI:10.1016/j.radonc.2009.03.006. [32] Abramyuk A,Tokalov S,Zphel K,et al. Is pre-therapeutical FDG-PET/CT capable to detect high risk tumor subvolumes responsible for local failure in non-small cell lung cancer?[J]. Radiother Oncol,2009,91:399-404. DOI:10.1016/j.radonc.2009.01.003. [33] Vaidya M,Creach KM,Frye J,et al. Combined PET/CT image characteristics for radiotherapy tumor response in lung cancer[J]. Radiother Oncol,2012,102(2):239-245. DOI:10.1016/j.radonc.2011.10.014. [34] Feng M,Kong FM,Gross M,et al. Using fluorodeoxyglucose positron emission tomography to assess tumor volume during radiotherapy for non-small-cell lung cancer and its potential impact on adaptive dose escalation and normal tissue sparing[J]. Int J Radiat Oncol Biol Phys,2009,73(4):1228-1234. DOI:10.1016/j.ijrobp.2008.10.054. [35] van Elmpt W,de Ruysscher D,van der Salm A,et al. The PET-boost randomised phase Ⅱ dose-escalation trial in non-small cell lung cancer[J]. Radiother Oncol,2012,104(1):67-71. DOI:10.1016/j.radonc.2012.03.005.