[1]Lambin P,Rios-Velazquez E,Leijenaar R,et al. Radiomics:extracting more information from medical images using advanced feature analysis[J].Eur J Cancer,2012,48(4):441-446.DOI:10.1016/j.ejca.2011.11.036.
[2]Kumar V,Gu YH,Basu S,et al. Radiomics:the process and the challenges[J].Magn Reson Imaging,2012,30(9):1234-1248.DOI:10.1016/j.mri.2012.06.010.
[3]Mitra S,Shankar BU.Integrating radio imaging with gene expressions toward a personalized management of cancer[J].IEEE Trans Hum Mach Syst,2014,44(5):664-677.DOI:10.1109/THMS.2014.2325744.
[4]Verma V,Simone ⅡCB,Krishnan S,et al. The rise of radiomics and implications for oncologic management[J].J Natl Cancer Inst,2017,109(7):djx055.DOI:10.1093/jnci/djx055.
[5]Lahmiri S.Glioma detection based on multi-fractal features of segmented brain MRI by particle swarm optimization techniques[J].Biomed Signal Process Control,2017,31:148-155.DOI:10.1016/j.bspc.2016.07.008.
[6]Hsieh KLC,Lo CM,Hsiao CJ.Computer-aided grading of gliomas based on local and global MRI features[J].CompuMeth Prog Biomed,2017,139:31-38.DOI:10.1016/j.cmpb.2016.10.021.
[7]Qin JB,Liu ZY,Zhang H,et al. Grading of gliomas by using radiomic features on multiple Magnetic Resonance Imaging (MRI) sequences[J].Med Sci Monit,2017,23:2168-2178.DOI:10.12659/MSM.901270.
[8]Sala E,Mema E,Himoto Y,et al. Unravelling tumour heterogeneity using next-generation imaging:radiomics,radiogenomics,and habitat imaging[J].Clin Radiol,2017,72(1):3-10.DOI:10.1016/j.crad.2016.09.013.
[9]Eisele SC,Wen PY,Lee Q.Assessment of brain tumor response:RANO and its offspring[J].Curr Treat Options Oncol,2016,17(7):35.DOI:10.1007/s11864-016-0413-5.
[10]Kotrotsou A,Zinn PO,Colen RR.Radiomics in brain tumors:an emerging technique for characterization of tumor environment[J].Magn Reson Imaging Clin N Am,2016,24(4):719-729.DOI:10.1016/j.mric.2016.06.006.
[11]Elshafeey N,Kotrotsou A,Camejo DG,et al. Multicenter study to demonstrate radiomic texture features derived from MR perfusion images of pseudoprogression compared to true progression in glioblastoma patients[J].J Clin Oncol,2017,35(15 Suppl):2016.
[12]Roelcke U,Berberat J,Mamot C,et al. P04.22 Diffusivity changes in bevacizumab-responding and refractory meningioma[J].Neu Oncol,2017,19(S3):iii45.DOI:10.1093/neuonc/nox036.162.
[13]Chen XJ,Oshima K,Schott D,et al. Assessment of treatment response during chemoradiation therapy for pancreatic cancer based on quantitative radiomic analysis of daily CTs:an exploratory study[J].PLoS One,2017,12(6):e0178961.DOI:10.1371/journal.pone.0178961.
[14]McGarry SD,Hurrell SL,Kaczmarowski AL,et al. Magnetic resonance imaging-based radiomic profiles predict patient prognosis in newly diagnosed glioblastoma before therapy[J].Tomography,2016,2(3):223-228.DOI:10.18383/j.tom.2016.00250.
[15]Wibmer A,Hricak H,Gondo T,et al. Haralick texture analysis of prostate MRI:utility for differentiating non-cancerous prostate from prostate cancer and differentiating prostate cancers with different Gleason scores[J].Eur Radiol,2015,25(10):2840-2850.DOI:10.1007/s00330-015-3701-8.
[16]Beig N,Patel J,Prasanna P,et al. Radiogenomic analysis of hypoxia pathway reveals computerized MRI descriptors predictive of overall survival in Glioblastoma[A]//Proceedings of SPIE Volume 10134,Medical Imaging 2017:Computer-Aided Diagnosis[C].Orlando,Florida,United States:SPIE,2017:101341U.DOI:10.1117/12.2255694.
[17]Kickingereder P,Götz M,Muschelli J,et al. Large-scale radiomic profiling of recurrent glioblastoma identifies an imaging predictor for stratifying anti-angiogenic treatment response[J].Clin Cancer Res,2016,22(23):5765-5771.DOI:10.1158/1078-0432.CCR-16-0702.
[18]Lohmann P,Stoffels G,Ceccon G,et al. Radiation injury vs.recurrent brain metastasis:combining textural feature radiomics analysis and standard parameters may increase 18F-FET PET accuracy without dynamic scans[J].Eur Radiol,2017,27(7):2916-2927.DOI:10.1007/s00330-016-4638-2.
[19]Chen Y,Argentinis JDE,Weber G.IBM Watson:how cognitive computing can be applied to big data challenges in life sciences research[J].Clin Ther,2016,38(4):688-701.DOI:10.1016/j.clinthera.2015.12.001.
[20]中国脑胶质瘤协作组,中国脑胶质瘤基因组图谱计划.中国脑胶质瘤分子诊疗指南[J].中华神经外科杂志,2014,30(5):435-444.DOI:10.3760/cma.j.issn.1001-2346.2014.05.002.
Chinese glioma collaboration group. Chinese glioma genome mapping program-Guidelines for molecular diagnosis and treatment of Chinese gliomas[J].Chin J Neurosurg,2014,30(5):435-444.DOI:10.3760/cma.j.issn.1001-2346.2014.05.002.
[21]Pope WB,Prins RM,Thomas MA,et al. Non-invasive detection of 2-hydroxyglutarate and other metabolites in IDH1 mutant glioma patients using magnetic resonance spectroscopy[J].J Neuro Oncol,2012,107(1):197-205.DOI:10.1007/s11060-011-0737-8.
[22]Drabycz S,Roldán G,De Robles P,et al. An analysis of image texture,tumor location,and MGMT promoter methylation in glioblastoma using magnetic resonance imaging[J].NeuroImage,2010,49(2):1398-1405.DOI:10.1016/j.neuroimage.2009.09.049.
[23]Andreassen CN,Schack LMH,Laursen LV,et al. Radiogenomics–current status,challenges and future directions[J].Cancer Lett,2016,382(1):127-136.DOI:10.1016/j.canlet.2016.01.035.
[24]Colen RR,Hassan I,Elshafeey N,et al. Shedding light on the 2016 World Health Organization classification of tumors of the central nervous system in the era of radiomics and radiogenomics[J].Magn Reson Imaging Clin N Am,2016,24(4):741-749.DOI:10.1016/j.mric.2016.07.001.
[25]Bonte S,Goethals I,Van Holen R.An automatic and flexible brain tumour segmentation algorithm using abnormality detection for radiomics applications[A]//Proceedings of the 18th Symposium of the Belgian Society of Nuclear Medicine[C].Ghent,Belgium:Belgian Society of Nuclear Medicine,2017.
[26]Cheng Y,Fu XL,Liu J,et al. P2.03b-006 distinct MR imaging features of metastatic lesions in brain with Non-small cell lung cancer according to EGFR mutation status[J].J Thorac Oncol,2017,12(S1):S935-S936.DOI:10.1016/j.jtho.2016.11.1287.
[27]Nardone V,Tini P,Biondi M,et al. Prognostic value of MR imaging texture analysis in brain non-small cell lung cancer oligo-metastases undergoing stereotactic irradiation[J].Cureus,2016,8(4):e584.DOI:10.7759/cureus.584.
[28]Li ZJ,Mao Y,Li HS,et al. Differentiating brain metastases from different pathological types of lung cancers using texture analysis of T1 postcontrast MR[J].Magn Reson Med,2016,76(5):1410-1419.DOI:10.1002/mrm.26029.
[29]Yip SSF,Aerts HJWL.Applications and limitations of radiomics[J].Phys Med Biol,2016,61(13):R150-R166.DOI:10.1088/0031-9155/61/13/R150.
[30]Hyare H,Thust S,Rees J.Advanced MRI techniques in the monitoring of treatment of gliomas[J].Curr Treat Options Neurol,2017,19(3):11.DOI:10.1007/s11940-017-0445-6.
[31]Abrol S,Kotrotsou A,Salem A,et al. Radiomic phenotyping in brain cancer to unravel hidden information in medical images[J].Top Magn Reson Imaging,2017,26(1):43-53.DOI:10.1097/RMR.0000000000000117.
[32]Lee J,Jain R,Khalil K,et al. Texture feature ratios from relative CBV maps of perfusion MRI are associated with patient survival in glioblastoma[J].Am J Neuroradiol,2016,37(1):37-43.DOI:10.3174/ajnr. A4534.
[33]Nachimuthu DS,Baladhandapani A.Multidimensional texture characterization:on analysis for brain tumor tissues using MRS and MRI[J].J Digit Imaging,2014,27(4):496-506.DOI:10.1007/s10278-013-9669-5.
[34]Galavis PE,Hollensen C,Jallow N,et al. Variability of textural features in FDG PET images due to different acquisition modes and reconstruction parameters[J].Acta Oncol,2010,49(7):1012-1016.DOI:10.3109/0284186X.2010.498437.
[35]Shiri I,Abdollahi H,Shaysteh S,et al. Test-retest reproducibility and robustness analysis of recurrent glioblastoma MRI radiomics texture features[J].Iran J Radiol,2017(5):e48035.DOI:10.5812/iranjradiol.48035.
[36]Wang J,Wu CJ,Bao ML,et al. Machine learning-based analysis of MR radiomics can help to improve the diagnostic performance of PI-RADS v2 in clinically relevant prostate cancer[J].Eur Radiol,2017,27(10):4082-4090.DOI:10.1007/s00330-017-4800-5.
[37]Li ZC,Li QH,Song BL,et al. Clustering of MRI radiomics features for glioblastoma multiforme:an initial study[A]//Proceedings of the 7th International Conference on Medical Imaging and Virtual Reality[C].Bern,Switzerland:Springer,2016:311-319.DOI:10.1007/978-3-319-43775-0_28.
[38]Narang S,Lehrer M,Yang DL,et al. Radiomics in glioblastoma:current status,challenges and potential opportunities[J].Transl Cancer Res,2016,5(4):383-397.DOI:10.21037/tcr.2016.06.31.
[39]Clarke LP,Nordstrom RJ,Zhang HM,et al. The quantitative imaging network:NCI′s historical perspective and planned goals[J].Transl Oncol,2014,7(1):1-4.DOI:10.1593/tlo.13832.
[40]Bibault JE,Giraud P,Burgun A.Big Data and machine learning in radiation oncology:state of the art and future prospects[J].Cancer Lett,2016,382(1):110-117.DOI:10.1016/j.canlet.2016.05.033. |