A dose volume analysis of brain stem injury after intensity-modulated radiotherapy in patients with nasopharyngeal carcinoma
Yao Chengyun,Wang Lijun,Kong Cheng,Zhang Lanfang,He Xia,Huang Shengfu,Zhang Yiqin
Department of Radiotherapy (Yao CY,Wang LJ,Kong C,Zhang LF,He X,Huang SF,Zhang YQ),Department of Image (Zhang SF),Cancer Hospital of Jiangsu Province,Nanjing 210009,China
Abstract:Objective To investigate the relationship between the incidence of radiation-induced brain stem injury after intensity-modulated radiotherapy (IMRT) and the radiation dose volume in patients with nasopharyngeal carcinoma. Methods A retrospective analysis was performed on the data of 258 patients newly diagnosed with nasopharyngeal carcinoma who received IMRT in our group from 2005 to 2013. The radiation dose per unit volume of brain stem was analyzed. The relationship between the incidence of brain stem injury induced by IMRT and the radiation dose volume was studied. The survival rate was calculated using the Kaplan-Meier method. The factors influencing the radiation-induced brain stem injury were analyzed using the Cox regression model. Results Two patients with stage T3 disease and three patients with T4 disease had radiation-induced brain stem injury. The 3-and 5-year injury incidence rates were 1.6% and 2.4%, respectively. The latency ranged between 9 and 58 months, with a median latency of 19 months. The median D1% and Dmax for the brain stem were 54.24 and 59.22 Gy in all patients, 54.31 and 59.45 Gy in patients with stage T3 disease, and 61.29 and 66.37 Gy in patients with stage T4 disease, respectively. In the five patients with brain stem injury, the D1% and Dmax were larger than 60 and 63 Gy, respectively. The univariate analysis showed that the incidence of radiation-induced brain stem injury was correlated with D1%, Dmax, D0.1 cm3, D0.5 cm3, and D1.0 cm3(all P=0.01). The incidence of radiation-induced brain stem injury was significantly lower in patients with D1%, Dmax, D0.1 cm3, D0.5 cm3, and D1.0 cm3 no larger than 60, 63, 60, 58, and 56 Gy, respectively (all P=0.00). Conclusions The incidence of radiation-induced brain stem injury after IMRT is relatively low in patients with nasopharyngeal carcinoma. Strict control of the dose to the brain stem may help to reduce the incidence of brain stem injury and improve the long-term quality of life.
Yao Chengyun,Wang Lijun,Kong Cheng et al. A dose volume analysis of brain stem injury after intensity-modulated radiotherapy in patients with nasopharyngeal carcinoma[J]. Chinese Journal of Radiation Oncology, 2017, 26(2): 128-132.
[1] 孔琳,张有望.鼻咽癌放射治疗后神经系统后遗症[J].中华放射肿瘤学杂志,1999,8(3):181.DOI:10.3760/j.issn.1004- 4221.1999.03.025. Kong L,Zhang YW.Sequelae of nervous system after radiotherapy for nasopharyngeal carcinoma[J].Chin J Radiat Oncol,1999,8(3):181.DOI:10.3760/j.issn.1004- 4221.1999.03.025. [2] Lee AWM,Ng SH,Ho JHC,et al. Clinical diagnosis of late temporal lobe necrosis following radiation therapy for nasopharyngeal carcinoma[J].Cancer,1988,61(8):1535-1542.DOI:10.1002/1097-0142(19880415)61:8<1535::AID-CNCR2820610809>3.0.CO;2-E. [3] 田野,郭志荣,祝梅芳.中国大陆地区鼻咽癌放疗后放射性脑病的系统评价[J].中华肿瘤杂志,2002,24(5):471-473.DOI:10.3760/j.issn.0253-3766.2002.05.015. Tian Y,Guo ZR,Zhu MF.Radiation encephalopathy in nasopharyngeal carcinoma patients in mainland China:a systematic evaluation[J].Chin J Oncol,2002,24(5):471-473.DOI:10.3760/j.issn.0253-3766.2002.05.015. [4] 陈春燕,韩非,赵充,等.934例鼻咽癌单纯放疗远期疗效分析[J].中华放射肿瘤学杂志,2008,17(6):411-415.DOI:10.3321/j.issn.1004-4221.2008.06.001. Chen CY,Han F,Zhao C,et al. Long-term results of 934 nasopharyngeal carcinoma treated with radiotherapy alone[J].Chin J Radiat Oncol,2008,17(6):411-415.DOI:10.3321/j.issn.1004-4221.2008.06.001. [5] 杨云利,刘颖新,谢东,等.鼻咽癌放射治疗后迟发性脑干损伤相关因素分析[J].中华放射肿瘤学杂志,2002,11(1):5-7.DOI:10.3760/j.issn.1004-4221.2002.01.002. Yang YL,Liu YX,Xie D,et al. Delayed radiation injury of brain stem after radiotherapy in nasopharyngeal[J].Chin J Radiat Oncol,2002,11(1):5-7.DOI:10.3760/j.issn.1004-4221.2002.01.002. [6] 苏胜发,黄莹,韩非,等.鼻咽癌IMRT后放射性脑损伤的临床特征分析[J].中华放射医学与防护杂志,2012,32(1):60-64.DOI:10.3760/cma.j.issn.0254-5098.2012.01.015. Su SF,Huang Y,Han F,et al. Clinical characteristics with radiation encephalopathy after intensity-modulated radiotherapy in nasopharyngeal carcinoma patients:analysis of 42 cases[J].Chin J Radiol Med Prot,2012,32(1):60-64.DOI:10.3760/cma.j.issn.0254-5098.2012.01.015. [7] Zheng YJ,Han F,Xiao WW,et al. Analysis of late toxicity in nasopharyngeal carcinoma patients treated with intensity modulated radiation therapy[J].Radiat Oncol,2015,10:17.DOI:10.1186/s13014-014-0326-z. [8] Baxi S,Park E,Chong V,et al. Temporal changes in IMRT contouring of organs at risk for nasopharyngeal carcinoma—the learning curve blues and a tool that could help[J].Technol Cancer Res Treat,2009,8(2):131-140.DOI:10.1177/153303460900800206. [9] 卢秋霞,卫光宇,陈露斯,等.鼻咽癌放射性脑病147例MR表现特点分析[J].中华肿瘤防治杂志,2010,17(2):122-125. Lu QX,Wei GY,Chen LS,et al. MR features of radiation encephalopathy in 147 patients with nasopharyngeal carcinoma[J].Chin J Cancer Prev Treat,2010,17(2):122-125. [10] Mayo C,Yorke E,Merchant TE.Radiation associated brainstem injury[J].Int J Radiat Oncol Biol Phys,2010,76(3S):S36-S41.DOI:10.1016/j.ijrobp.2009.08.078. [11] Foote KD,Friedman WA,Buatti JM,et al. Analysis of risk factors associated with radiosurgery for vestibular schwannoma[J].J Neurosurg,2001,95(3):440-449. [12] Kased N,Huang K,Nakamura JL,et al. Gamma knife radiosurgery for brainstem metastases:the UCSF experience[J].J Neurooncol,2008,86(2):195-205.DOI:10.1007/s11060-007-9458-4. [13] Merchant TE,Chitti RM,Li CH,et al. Factors associated with neurological recovery of brainstem function following postoperative conformal radiation therapy for infratentorial ependymoma[J].Int J Radiat Oncol Biol Phys,2010,76(2):496-503.DOI:10.1016/j.ijrobp.2009.01.079. [14] Debus J,Hug EB,Liebsch NJ,et al. Brainstem tolerance to conformal radiotherapy of skull base tumors[J].Int J Radiat Oncol Biol Phys,1997,39(5):967-975.DOI:10.1016/S0360-3016(97)00364-7. [15] Jian JJM,Cheng SH,Tsai SYC,et al. Improvement of local control of T3 and T4 nasopharyngeal carcinoma by hyperfractionated radiotherapy and concomitant chemotherapy[J].Int J Radiat Oncol Biol Phys,2002,53(2):344-352.DOI:10.1016/S0360-3016(02)02709-8 [16] Hoppe BS,Stegman LD,Zelefsky MJ,et al. Treatment of nasal cavity and paranasal sinus cancer with modern radiotherapy techniques in the postoperative setting-the MSKCC experience[J].Int J Radiat Oncol Biol Phys,2007,67(3):691-702.DOI:10.1016/j.ijrobp.2006.09.023. [17] Daly ME,Chen AM,Bucci MK,et al. Intensity-modulated radiation therapy for malignancies of the nasal cavity and paranasal sinuses[J].Int J Radiat Oncol Biol Phys,2007,67(1):151-157.DOI:10.1016/j.ijrobp.2006.07.1389. [18] Schoenfeld GO,Amdur RJ,Morris CG,et al. Patterns of failure and toxicity after intensity-modulated radiotherapy for head and neck cancer[J].Int J Radiat Oncol Biol Phys,2008,71(2):377-385.DOI:10.1016/j.ijrobp.2007.10.010. [19] Sun Y,Yu XL,Luo W,et al. Recommendation for a contouring method and atlas of organs at risk in nasopharyngeal carcinoma patients receiving intensity-modulated radiotherapy[J].Radiother Oncol,2014,110(3):390-397.DOI:10.1016/j.radonc.2013.10.035.