Abstract:Objective To study the dose distribution of five clinical technologies commonly used in simulation phantom of breast cancer after radical mastectomy are observed and analyzed by using MOSFET detector. The dose validation from TPS plan is tested for clinical treatment. Methods High simulation inhomogeneous equivalent phantom of human body is used to simulate the typical patient after the operation of left breast cancer. The kay points and other points on behalf of depth to the region of interest with side of the chest wall are marked. Five radiotherapy plans (FIF-IMRT、IMRT、3DCRT、6 MeV-electron beam,9 MeV-electron beam) were designed separately on TPS based on phantom image series. After confirmed, the plans are delivered to the phantom and the dosimetrical quantities are measured. Using analysis of variance test the difference in the five methods. Results FIF-IMRT,IMRT,3DCRT,6 MeV-electron beam,9 MeV-electron beam,Five method actual measured doses respectively:Surface 74.32 cGy,69.21 cGy, 73.97 cGy,75.86 cGy,81.41 cGy (F=3.36,P<0.05);0.5 cm Depth 95.59 cGy,93.37 cGy,96.78 cGy,99.63 cGy,94.97 cGy (F=2.40,P>0.05);1.0 cm Depth 103.42 cGy,102.53 cGy,103.48 cGy,88.89 cGy,101.36 cGy (F=7.19,P<0.05);Nearly chest wall of lung 82.74 cGy,68.24 cGy,85.34 cGy,21.49 cGy,75.02 cGy (F=46.43,P<0.05). Compared to the dose value in TPS, dose delivered to Surface is lower at 8.04%(-6.57% to -11.93%),points at 0.5 cm is lower at 1.95%(2.15% to -5.90%), points at 1 cm ishigher at 0.65%(-2.87% to 3.22%),lung is lower at 3.53%(3.90% to -8.93%). ConclusionsMOSFET detector with the corresponding simulation phantom can be used to measure the actual dose in a portion of body, and to evaluate the dosimetrical characteristics of different radiotherapy techniques. MOSFET detector is suitable for real-time, in vivo measurement of radiation dose during radiotherapy in breast cancer patients, so that the physicians are able to change treatment plan in time to ensure the accuracy of target dose. DOI:10.3760/cma.j.issn.1004-4221.2015.03.026 作者单位:215006 苏州大学附属第一医院放疗科(郭建、秦颂兵、徐晓婷、王利利、詹蔚、陈龙、周菊英);上海交通大学医学院附属苏州九龙医院(蔡晓君) 通信作者:秦颂兵,Email:qin92244@163.com
. Study on radiotherapy method with simulation phantom for breast cancer after radical mastectomy[J]. Chinese Journal of Radiation Oncology, 2015, 24(3): 335-339.
[1] Rutqvist LE,RoseC,Cavallin-Staid E.A systematic overview of radiation therapy efects in breast cancer[J].Acta Onco1,2003,42(5-6):532-545. [2] Van de Steene J,Soete G,Storme G.Adjuvant radiotherapy for breast cancer significantly impmvos overan survival:the missing link[J].Radiother Onco1,2000,55(3):263-272. [3] Kry SF, Price M, Wang Z, et al. Investigation into the use of a MOSFET dosimeter as an implantable fiducial marker[J]. J Appl Clin Med Phys,2009,10(1):2893. [4] 祁振宇,邓小武,黄劭敏,等.新型金属氧化物半导体场效应晶体管探测器在放疗剂量检控中的应用[J].中华放射肿瘤学杂志,2006,15(4):329-334. [5] Physical aspect of quality assurance in radiation therapy. Radiation therapy committee task group No.24[A]//American association of physicists in medicine. AAPM Report No.13[M]. New York:The American Institute of Physics Inc,1984:23-29. [6] 张永谦,戴建荣.器官运动对剂量分布的影响[J].中华放射医学与防护杂志,2007,27(2):206-208. [7] Bortfeld T, Jiang SB, Rietzel E. Effects of motion on the total dose distribution[J]. Semin Radiat Oncol,2004,14(1):41-51. [8] 黄晓波,蒋国梁,陈佳艺,等.乳腺癌调强放射治疗和常规切线野的三维剂量学研究[J].癌症,2006,25(7):855-860. [9] Pierce LJ, Butler JB, Martel MK,et al. Postmastectomy radiotherapy of the chest wall:dosimetric comparison of common techniques[J]. Int J Radiat Oncol Biol Phys,2002,52(5):1220-1230. [10] 成芳,王霞.Ⅱ、Ⅲ期乳腺癌术后三种放疗方式的比较研究[J].现代肿瘤医学,2010,18(8):1538-1540. DOI:10.3969/j.issn.1672-4992.2010.08.26. [11] Qi ZY, Deng XW, Huang SM, et al. In vivo verification of superficial dose for head and neck treatments using intensity-modulated techniques[J]. Med Phys,2009,36(1):59-70.DOI:10.1118/1.3030951.