Research progress on the effect of hyperthermia on vascular endothelial growth factor in tumor microenvironment
Cong Yuan1,2, Shao Yun1,2, Zhou Xuexiao1,2, Shen Pei1,2, Wang Shengzhi2
1School of Stomatology of Qingdao University, Qingdao 266003, China; 2Department of Oral and Maxillofacial Surgery, the Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai 264000, China
Abstract:Vascular endothelial growth factor (VEGF) plays an important role in promoting tumor vascular growth and changing vascular wall permeability. With the in-depth study of tumor hyperthermia and tumor microenvironment, more and more studies have shown that hyperthermia exerts multiple regulatory effects on VEGF in tumor microenvironment. Combined with current research progress in China and abroad, this article reviews the effect of hyperthermia on VEGF and its related cells and factors in tumor microenvironment, aiming to provide new ideas for the clinical application of tumor hyperthermia combined with immune or targeted therapy.
Cong Yuan,Shao Yun,Zhou Xuexiao et al. Research progress on the effect of hyperthermia on vascular endothelial growth factor in tumor microenvironment[J]. Chinese Journal of Radiation Oncology, 2023, 32(8): 737-742.
[1] Brassart-Pasco S, Brézillon S, Brassart B, et al.Tumor microenvironment: extracellular matrix alterations influence tumor progression[J]. Front Oncol, 2020,10:397. DOI: 10.3389/fonc.2020.00397. [2] Oei AL, Vriend L, Krawczyk PM, et al.Targeting therapy-resistant cancer stem cells by hyperthermia[J]. Int J Hyperthermia, 2017,33(4):419-427. DOI: 10.1080/02656736.2017.1279757. [3] 周学筱, 沈佩, 王升志, 等. 热疗对肿瘤免疫微环境中免疫细胞及免疫相关细胞因子的影响[J].中华放射肿瘤学杂志,2020,29(12):1130-1134. DOI: 10.3760/cma.j.cn113030-20200420-00189. Zhou XX, Shen P, Wang SZ, et al.Effect of hyperthermia on immune cells and immune-related cytokines in tumor immune microenvironment[J].Chin J Radiat Oncol,2020,29(12):1130-1134. DOI: 10.3760/cma.j.cn113030-20200420-00189. [4] Hurwitz MD.Hyperthermia and immunotherapy: clinical opportunities[J]. Int J Hyperthermia, 2019,36(sup1):4-9. DOI: 10.1080/02656736.2019.1653499. [5] Chang MY, Hou ZY, Wang M, et al.Recent advances in hyperthermia therapy-based synergistic immunotherapy[J]. Adv Mater, 2021,33(4):e2004788. DOI: 10.1002/adma.202004788. [6] Winslow TB, Eranki A, Ullas S, et al.A pilot study of the effects of mild systemic heating on human head and neck tumour xenografts: analysis of tumour perfusion, interstitial fluid pressure, hypoxia and efficacy of radiation therapy[J]. Int J Hyperthermia, 2015,31(6):693-701. DOI: 10.3109/02656736.2015.1037800. [7] Dunne M, Regenold M, Allen C. Hyperthermia can alter tumor physiology and improve chemo- and radio-therapy efficacy[J]. Adv Drug Deliv Rev, 2020,163-164:98-124. DOI: 10.1016/j.addr.2020.07.007. [8] Oei AL, Kok HP, Oei SB, et al. Molecular and biological rationale of hyperthermia as radio- and chemosensitizer[J]. Adv Drug Deliv Rev, 2020,163-164:84-97. DOI: 10.1016/j.addr.2020.01.003. [9] Issels RD, Lindner LH, Verweij J, et al.Neo-adjuvant chemotherapy alone or with regional hyperthermia for localised high-risk soft-tissue sarcoma: a randomised phase 3 multicentre study[J]. Lancet Oncol, 2010,11(6):561-570. DOI: 10.1016/S1470-2045(10)70071-1. [10] Melincovici CS, Boşca AB, Şuşman S, et al.Vascular endothelial growth factor (VEGF) - key factor in normal and pathological angiogenesis[J]. Rom J Morphol Embryol, 2018,59(2):455-467. [11] Nakazato T, Shingaki S, Kitamura N, et al.Expression level of vascular endothelial growth factor-C and -A in cultured human oral squamous cell carcinoma correlates respectively with lymphatic metastasis and angiogenesis when transplanted into nude mouse oral cavity[J]. Oncol Rep,2006,15(4):825-830. [12] Pradeep CR, Sunila ES, Kuttan G.Expression of vascular endothelial growth factor (VEGF) and VEGF receptors in tumor angiogenesis and malignancies[J]. Integr Cancer Ther, 2005,4(4):315-321. DOI: 10.1177/1534735405282557. [13] Bhattacharya R, Ye XC, Wang R, et al.Intracrine VEGF signaling mediates the activity of prosurvival pathways in human colorectal cancer cells[J]. Cancer Res, 2016,76(10):3014-3024. DOI: 10.1158/0008-5472.CAN-15-1605. [14] Calderwood SK, Gong J.Heat shock proteins promote cancer: it's a protection racket[J]. Trends Biochem Sci, 2016,41(4):311-323. DOI: 10.1016/j.tibs.2016.01.003. [15] Payne M, Bossmann SH, Basel MT.Direct treatment versus indirect: thermo-ablative and mild hyperthermia effects[J]. Wiley Interdiscip Rev Nanomed Nanobiotechnol, 2020,12(5):e1638. DOI: 10.1002/wnan.1638. [16] 王升志, 王锂, 高向东, 等. 热化疗对颌面部鳞癌细胞热休克蛋白70表达的影响[J].华西口腔医学杂志,2005,23(4):277-279. DOI: 10.3321/j.issn:1000-1182.2005.04.002. Wang SZ, Wang L, Gao XD, et al.Influence of the expression of heat shock protein 70 in maxillofacial squamous cell carcinoma by themochemotherapy[J]. West China J Stomatol,2005,23(4):277-279. DOI: 10.3321/j.issn:1000-1182.2005.04.002. [17] Ahmed M, Kumar G, Gourevitch S, et al.Radiofrequency ablation (RFA)-induced systemic tumor growth can be reduced by suppression of resultant heat shock proteins[J]. Int J Hyperthermia, 2018,34(7):934-942. DOI: 10.1080/02656736.2018.1462535. [18] Pugh CW, Ratcliffe PJ.Regulation of angiogenesis by hypoxia: role of the HIF system[J]. Nat Med, 2003,9(6):677-684. DOI: 10.1038/nm0603-677. [19] 岑兴, 廖楚航, 费伟, 等. HIF-1α RNAi对口腔鳞癌生长以及血管生成影响的研究[J].实用口腔医学杂志,2021,37(4):482-486. DOI: 10.3969/j.issn.1001-3733.2021.04.008. Cen X, Liao CH, Fei W, et al.The effects of HIF-1α RNAi on the growth and angiogenesis of oral squamous cell carcinoma[J]. J Practic Stomatol,2021,37(4):482-486. DOI: 10.3969/j.issn.1001-3733.2021.04.008. [20] Kim W, Kim MS, Kim HJ, et al.Role of HIF-1α in response of tumors to a combination of hyperthermia and radiation in vivo[J]. Int J Hyperthermia, 2018,34(3):276-283. DOI: 10.1080/02656736.2017.1335440. [21] Gabrilovich DI, Chen HL, Girgis KR, et al.Production of vascular endothelial growth factor by human tumors inhibits the functional maturation of dendritic cells[J]. Nat Med, 1996,2(10):1096-1103. DOI: 10.1038/nm1096-1096. [22] 董斌, 张兵, 封亚萍, 等. VEGF诱导致耐受性树突状细胞对口腔鳞状细胞癌患者T细胞免疫功能的影响[J].癌症进展,2018,16(9):1111-1115. DOI: 10.11877/j.issn.1672-1535.2018.16.09.13. Dong B, Zhang B, Feng YP, et al.The impact of tolerogenic dendritic cell induced by VEGF on T lymphocyte immune function in patients with oral squamous cell carcinoma[J].Oncol Prog,2018,16(9):1111-1115. DOI: 10.11877/j.issn.1672-1535.2018.16.09.13. [23] Srivastava P.Roles of heat-shock proteins in innate and adaptive immunity[J]. Nat Rev Immunol, 2002,2(3):185-194. DOI: 10.1038/nri749. [24] Qian M, Chen LL, Du YL, et al.Biodegradable mesoporous silica achieved via carbon nanodots-incorporated framework swelling for debris-mediated photothermal synergistic immunotherapy[J]. Nano Lett, 2019,19(12):8409-8417. DOI: 10.1021/acs.nanolett.9b02448. [25] Jeong S, Choi Y, Kim K.Engineering therapeutic strategies in cancer immunotherapy via exogenous delivery of toll-like receptor agonists[J]. Pharmaceutics, 2021,13(9):1374. DOI: 10.3390/pharmaceutics13091374. [26] Li N, Qin JF, Lan L, et al.PTEN inhibits macrophage polarization from M1 to M2 through CCL2 and VEGF-A reduction and NHERF-1 synergism[J]. Cancer Biol Ther, 2015,16(2):297-306. DOI: 10.1080/15384047.2014.1002353. [27] He K, Jia SG, Lou Y, et al.Cryo-thermal therapy induces macrophage polarization for durable anti-tumor immunity[J]. Cell Death Dis, 2019,10(3):216. DOI: 10.1038/s41419-019-1459-7. [28] Horikawa N, Abiko K, Matsumura N, et al.Expression of vascular endothelial growth factor in ovarian cancer inhibits tumor immunity through the accumulation of myeloid-derived suppressor cells[J]. Clin Cancer Res, 2017,23(2):587-599. DOI: 10.1158/1078-0432.CCR-16-0387. [29] Lugano R, Ramachandran M, Dimberg A.Tumor angiogenesis: causes, consequences, challenges and opportunities[J]. Cell Mol Life Sci, 2020,77(9):1745-1770. DOI: 10.1007/s00018-019-03351-7. [30] MacDonald C, Ministero S, Pandey M, et al. Comparing thermal stress reduction strategies that influence MDSC accumulation in tumor bearing mice[J]. Cell Immunol, 2021,361:104285. DOI: 10.1016/j.cellimm.2021.104285. [31] Yano H, Andrews LP, Workman CJ, et al.Intratumoral regulatory T cells: markers, subsets and their impact on anti-tumor immunity[J]. Immunology, 2019,157(3):232-247. DOI: 10.1111/imm.13067. [32] Bourhis M, Palle J, Galy-Fauroux I, et al.Direct and indirect modulation of T cells by VEGF-A counteracted by anti-angiogenic treatment[J]. Front Immunol, 2021,12:616837. DOI: 10.3389/fimmu.2021.616837. [33] Ma LC, Hernandez MO, Zhao YM, et al. Tumor cell biodiversity drives microenvironmental reprogramming in liver cancer[J]. Cancer Cell, 2019,36(4):418-430.e6. DOI: 10.1016/j.ccell.2019.08.007. [34] Schmidtner J, Distel LV, Ott OJ, et al.Hyperthermia and irradiation of head and neck squamous cancer cells causes migratory profile changes of tumour infiltrating lymphocytes[J]. Int J Hyperthermia, 2009,25(5):347-354. DOI: 10.1080/02656730902852677. [35] Mao XQ, Xu J, Wang W, et al.Crosstalk between cancer-associated fibroblasts and immune cells in the tumor microenvironment: new findings and future perspectives[J]. Mol Cancer, 2021,20(1):131. DOI: 10.1186/s12943-021-01428-1. [36] Mirkeshavarz M, Ganjibakhsh M, Aminishakib P, et al.Interleukin-6 secreted by oral cancer- associated fibroblast accelerated VEGF expression in tumor and stroma cells[J]. Cell Mol Biol (Noisy-le-grand), 2017,63(10):131-136. DOI: 10.14715/cmb/2017.63.10.21. [37] Yu QW, Qiu Y, Li JP, et al.Targeting cancer-associated fibroblasts by dual-responsive lipid-albumin nanoparticles to enhance drug perfusion for pancreatic tumor therapy[J]. J Control Release, 2020,321:564-575. DOI: 10.1016/j.jconrel.2020.02.040. [38] Nicolás-Boluda A, Vaquero J, Laurent G, et al.Photothermal depletion of cancer-associated fibroblasts normalizes tumor stiffness in desmoplastic cholangiocarcinoma[J]. ACS Nano, 2020,14(5):5738-5753. DOI: 10.1021/acsnano.0c00417. [39] Markezana A, Goldberg SN, Kumar G, et al.Incomplete thermal ablation of tumors promotes increased tumorigenesis[J]. Int J Hyperthermia, 2021,38(1):263-272. DOI: 10.1080/02656736.2021.1887942. [40] Kanamori S, Nishimura Y, Okuno Y, et al.Induction of vascular endothelial growth factor (VEGF) by hyperthermia and/or an angiogenesis inhibitor[J]. Int J Hyperthermia, 1999,15(4):267-278. DOI: 10.1080/026567399285648.