Research on multi-Atlas segmentation based on feature clustering
Yan Kai1, Bai Xue2, Wang Binbing2, Shan Guoping2, Kang Xi1
1School of Nuclear Science and Technology, University of South China, Hengyang 421000, China; 2Department of Radiation Physics, Zhejiang Cancer Hospital, Cancer Hospital of University of Chinese Academy of Sciences,Institute of Cancer Research and Basic Medical Science of Chinese Academy of Science, Hangzhou 310022, China
Abstract:Objective To study the improvement of normal tissue region of interest (ROI) segmentation based on clustering-based multi-Atlas segmentation method, thereby achieving better delineation of organs at risk. Methods CT images of 100 patients with cervical cancer who had completed treatment in Zhejiang Cancer Hospital during 2019-2020 were selected as the Atlas database. According to the volume characteristic parameters of the organs at risk (bladder, rectum and outer contour), the Atlas database was divided into several subsets by k-means clustering algorithm. The image to be segmented was matched to the corresponding Atlas library for multi-Atlas segmentation. The dice similarity coefficient (DSC) was used to evaluate the segmentation results. Results Using 30 patients as the test set, the sub-Atlas generated by different clustering methods were compared for the improvement of image segmentation results. Compared with general multi-Atlas segmentation methods, clustering-based multi-Atlas segmentation method significantly improve the segmentation accuracy for the bladder (DSC=0.83±0.09 vs. 0.69±0.15, P<0.001) and the rectum (0.7±0.07 vs. 0.56±0.16, P<0.001), but no statistical significance was observed for left and right femoral head (0.92±0.04, 0.91±0.02) and bone marrow (0.91±0.06). The average segmentation time of clustering-based multi-Atlas segmentation method was shorter than that of the general multi-Atlas segmentation method (2.7 min vs. 6.3 min). Conclusion The clustering-based multi-Atlas segmentation method can not only reduce the number of Atlas images registered with the image to be segmented, but also can be expected to improve the segmentation effect and obtain higher accuracy.
Yan Kai,Bai Xue,Wang Binbing et al. Research on multi-Atlas segmentation based on feature clustering[J]. Chinese Journal of Radiation Oncology, 2023, 32(6): 533-538.
[1] Lustberg T, van Soest J, Gooding M, et al. Clinical evaluation of atlas and deep learning based automatic contouring for lung cancer[J]. Radiother Oncol, 2018,126(2):312-317. DOI: 10.1016/j.radonc.2017.11.012. [2] 马辰莺, 周菊英, 徐晓婷, 等. 基于深度学习宫颈癌靶区自动分割勾画临床研究[J].中华放射肿瘤学杂志,2020,29(10):859-865. DOI: 10.3760/cma.j.cn113030-20191112-00475. Ma CY, Zhou JY, Xu XT, et al.Clinical evaluation of deep learning-based clinical target volume auto-segmentation algorithm for cervical cancer[J].Chin J Radiat Oncol,2020,29(10):859-865. DOI: 10.3760/cma.j.cn113030-20191112-00475. [3] Iglesias JE, Sabuncu MR.Multi-atlas segmentation of biomedical images: a survey[J]. Med Image Anal, 2015,24(1):205-219. DOI: 10.1016/j.media.2015.06.012. [4] 阴晓娟, 胡彩容, 张秀春, 等. 基于图谱库的ABAS自动勾画软件在头颈部肿瘤中的可行性研究[J].中华放射肿瘤学杂志,2016,25(11):1233-1237. DOI: 10.3760/cma.j.issn.1004-4221.2016.11.019. Yin XJ, Hu CR, Zhang XC, et al.The feasibility study of atlas-based autosegmentation (ABAS) software in head-and-neck cancer[J].Chin J Radiat Oncol,2016,25(11):1233-1237. DOI: 10.3760/cma.j.issn.1004-4221.2016.11.019. [5] Zhuang XH, Bai WJ, Song JJ, et al.Multiatlas whole heart segmentation of CT data using conditional entropy for atlas ranking and selection[J]. Med Phys, 2015,42(7):3822-3833. DOI: 10.1118/1.4921366. [6] Tao CJ, Yi JL, Chen NY, et al.Multi-subject atlas-based auto-segmentation reduces interobserver variation and improves dosimetric parameter consistency for organs at risk in nasopharyngeal carcinoma: a multi-institution clinical study[J]. Radiother Oncol, 2015,115(3):407-411. DOI: 10.1016/j.radonc.2015.05.012. [7] 孙宇晨, 张晓智, 李毅. 自动轮廓勾画软件构建图谱库在宫颈癌放疗中应用探讨[J].中华放射肿瘤学杂志,2017,26(10):1167-1172. DOI: 10.3760/cma.j.issn.1004-4221.2017.10.013. Sun YC, Zhang XZ, Li Y.Clinical feasibility of atlas-based auto-segmentation software in radiotherapy for cervical cancer[J].Chin J Radiat Oncol,2017,26(10):1167-1172. DOI: 10.3760/cma.j.issn.1004-4221.2017.10.013. [8] Artaechevarria X, Munoz-Barrutia A, Ortiz-de-Solorzano C. Combination strategies in multi-atlas image segmentation: application to brain MR data[J]. IEEE Trans Med Imaging, 2009,28(8):1266-1277. DOI: 10.1109/TMI.2009.2014372. [9] Zhao YP, Zhou XL.K-means clustering algorithm and its improvement research[J]. J Phys: Conference Series, 2021,1873:012074. DOI:10.1088/1742-6596/1873/1/012074. [10] Bartko JJ.Measurement and reliability: statistical thinking considerations[J]. Schizophr Bull, 1991,17(3):483-489. DOI: 10.1093/schbul/17.3.483. [11] Aljabar P, Heckemann RA, Hammers A, et al.Multi-atlas based segmentation of brain images: atlas selection and its effect on accuracy[J]. Neuroimage, 2009,46(3):726-738. DOI: 10.1016/j.neuroimage.2009.02.018. [12] Schipaanboord B, Boukerroui D, Peressutti D, et al.An evaluation of atlas selection methods for atlas-based automatic segmentation in radiotherapy treatment planning[J]. IEEE Trans Med Imaging, 2019,38(11):2654-2664. DOI: 10.1109/TMI.2019.2907072. [13] Gambacorta MA, Valentini C, Dinapoli N, et al.Clinical validation of atlas-based auto-segmentation of pelvic volumes and normal tissue in rectal tumors using auto-segmentation computed system[J]. Acta Oncol, 2013,52(8):1676-1681. DOI: 10.3109/0284186X.2012.754989. [14] Delpon G, Escande A, Ruef T, et al.Comparison of automated atlas-based segmentation software for postoperative prostate cancer radiotherapy[J]. Front Oncol, 2016,6:178. DOI: 10.3389/fonc.2016.00178. [15] Zijdenbos AP, Dawant BM, Margolin RA, et al.Morphometric analysis of white matter lesions in MR images: method and validation[J]. IEEE Trans Med Imaging, 1994,13(4):716-724. DOI: 10.1109/42.363096. [16] Teguh DN, Levendag PC, Voet PW, et al.Clinical validation of atlas-based auto-segmentation of multiple target volumes and normal tissue (swallowing/mastication) structures in the head and neck[J]. Int J Radiat Oncol Biol Phys, 2011,81(4):950-957. DOI: 10.1016/j.ijrobp.2010.07.009. [17] Thörnqvist S, Petersen JB, Høyer M, et al.Propagation of target and organ at risk contours in radiotherapy of prostate cancer using deformable image registration[J]. Acta Oncol, 2010,49(7):1023-1032. DOI: 10.3109/0284186X.2010.503662. [18] Liu ZK, Liu X, Xiao B, et al.Segmentation of organs-at-risk in cervical cancer CT images with a convolutional neural network[J]. Phys Med, 2020,69:184-191. DOI: 10.1016/j.ejmp.2019.12.008. [19] Sartor H, Minarik D, Enqvist O, et al.Auto-segmentations by convolutional neural network in cervical and anorectal cancer with clinical structure sets as the ground truth[J]. Clin Transl Radiat Oncol, 2020,25:37-45. DOI: 10.1016/j.ctro.2020.09.004.