[an error occurred while processing this directive]
中华放射肿瘤学杂志
   2025年4月9日 星期三     首 页 |  期刊介绍  |  编 委 会  |  投稿指南  |  期刊订阅  |  广告合作  |  学术影响  |  收录情况  |  联系我们  |  English
中华放射肿瘤学杂志  2023, Vol. 32 Issue (6): 533-538    DOI: 10.3760/cma.j.cn113030-20220510-00167
物理·技术·生物 最新目录| 下期目录| 过刊浏览| 高级检索 [an error occurred while processing this directive]|[an error occurred while processing this directive]
基于特征聚类的多Atlas分割研究
严恺1, 白雪2, 王彬冰2, 单国平2, 康玺1
1南华大学核科学技术学院,衡阳 421000;
2中国科学院肿瘤与基础医学研究所,中国科学院大学附属肿瘤医院,浙江省肿瘤医院放射物理科,杭州 310022
Research on multi-Atlas segmentation based on feature clustering
Yan Kai1, Bai Xue2, Wang Binbing2, Shan Guoping2, Kang Xi1
1School of Nuclear Science and Technology, University of South China, Hengyang 421000, China;
2Department of Radiation Physics, Zhejiang Cancer Hospital, Cancer Hospital of University of Chinese Academy of Sciences,Institute of Cancer Research and Basic Medical Science of Chinese Academy of Science, Hangzhou 310022, China
全文: PDF (0 KB)   HTML (1 KB) 
输出: BibTeX | EndNote (RIS)      背景资料
摘要 目的 研究基于聚类的多Atlas分割方法对正常组织感兴趣区分割的改善,以达到更好的危及器官的勾画效果。方法 选取2019—2020年浙江省肿瘤医院已完成治疗的100例宫颈癌患者的CT图像作为Atlas图谱库。按照危及器官(膀胱、直肠和外轮廓)的体积特征参数作为测度,利用k均值聚类(k-means)算法将Atlas图谱库划分成若干子集。将待分割图像匹配到相对应的图谱库中进行多Atlas分割。使用相似性系数(DSC)对分割结果进行评价分析。结果 以30例患者作为测试组,比较了不同聚类方法所生成的子图谱库对图像分割结果的改进。相较于一般多Atlas分割,聚类多Atlas分割方法能显著提高膀胱(DSC为0.83±0.09∶0.69±0.15,P<0.001和直肠(DSC为0.7±0.07∶0.56±0.16,P<0.001)的分割准确性,但左、右双侧股骨头(0.92±0.04、0.91±0.02)和骨髓(0.91±0.06)的差异无统计学意义。并且聚类多Atlas分割方法平均分割时间短于一般多Atlas分割方法(2.7∶6.3 min)。结论 聚类多Atlas分割方法不但会减少与待分割图像配准的Atlas图像个数,而且预期能提高分割效果,并获得较高的准确率。
服务
把本文推荐给朋友
加入我的书架
加入引用管理器
E-mail Alert
RSS
作者相关文章
严恺
白雪
王彬冰
单国平
康玺
关键词 宫颈肿瘤Atlas自动勾画聚类算法危及器官    
AbstractObjective To study the improvement of normal tissue region of interest (ROI) segmentation based on clustering-based multi-Atlas segmentation method, thereby achieving better delineation of organs at risk. Methods CT images of 100 patients with cervical cancer who had completed treatment in Zhejiang Cancer Hospital during 2019-2020 were selected as the Atlas database. According to the volume characteristic parameters of the organs at risk (bladder, rectum and outer contour), the Atlas database was divided into several subsets by k-means clustering algorithm. The image to be segmented was matched to the corresponding Atlas library for multi-Atlas segmentation. The dice similarity coefficient (DSC) was used to evaluate the segmentation results. Results Using 30 patients as the test set, the sub-Atlas generated by different clustering methods were compared for the improvement of image segmentation results. Compared with general multi-Atlas segmentation methods, clustering-based multi-Atlas segmentation method significantly improve the segmentation accuracy for the bladder (DSC=0.83±0.09 vs. 0.69±0.15, P<0.001) and the rectum (0.7±0.07 vs. 0.56±0.16, P<0.001), but no statistical significance was observed for left and right femoral head (0.92±0.04, 0.91±0.02) and bone marrow (0.91±0.06). The average segmentation time of clustering-based multi-Atlas segmentation method was shorter than that of the general multi-Atlas segmentation method (2.7 min vs. 6.3 min). Conclusion The clustering-based multi-Atlas segmentation method can not only reduce the number of Atlas images registered with the image to be segmented, but also can be expected to improve the segmentation effect and obtain higher accuracy.
Key wordsUterine cervical neoplasms    Atlas    Automatic delineation    Clustering algorithm    Organs at risk   
收稿日期: 2022-05-10     
基金资助:国家自然科学基金(12005190); 浙江省医药卫生科技项目(2021PY039)
通讯作者: 康玺,Email:kangcy2011@qq.com   
引用本文:   
严恺,白雪,王彬冰等. 基于特征聚类的多Atlas分割研究[J]. 中华放射肿瘤学杂志, 2023, 32(6): 533-538.
Yan Kai,Bai Xue,Wang Binbing et al. Research on multi-Atlas segmentation based on feature clustering[J]. Chinese Journal of Radiation Oncology, 2023, 32(6): 533-538.
链接本文:  
http://journal12.magtechjournal.com/Jweb_fszlx/CN/10.3760/cma.j.cn113030-20220510-00167     或     http://journal12.magtechjournal.com/Jweb_fszlx/CN/Y2023/V32/I6/533
京公网安备11010502022167号
版权所有 © 2010《中华放射肿瘤学杂志》编辑部
地址:北京朝阳区潘学园南里17号 中国医学科学院肿瘤医院(100021)
电话:010-67700737,87788294 Email: cjron@cmaph.org
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:Support@magtech.com.cn