Abstract:Objective To propose a markerless beam's eye view (BEV) tumor tracking algorithm, which can be applied to megavolt (MV) images with poor image quality, multi-leaf collimator (MLC) occlusion and non-rigid deformation. Methods Window template matching, image structure transformation and demons non-rigid registration method were used to solve the registration problem in MV images. The quality assurance (QA) plan was generated in the phantom and executed after manually setting the treatment offset on the accelerator, and 682 electronic portal imaging device (EPID) images in the treatment process were collected as fixed images. Meanwhile, the digitally reconstructured radiograph (DRR) images corresponding to the field angle in the planning system were collected as floating images to verify the accuracy of the algorithm. In addition, a total of 533 images were collected from 21 cases of lung tumor treatment data for tumor tracking study, providing quantitative results of tumor location changes during treatment. Image similarity was used for third-party verification of tracking results. Results The algorithm could cope with different degrees (10%-80%) of image missing. In the phantom verification, 86.8% of the tracking errors were less than 3 mm, and 80% were less than 2 mm. Normalized mutual information (NMI) varied from 1.182±0.026 to 1.202±0.027 (P<0.005) before and after registration and the change of Hausdorff distance (HD) was from 57.767±6.474 to 56.664±6.733 (P<0.005). The case results were predominantly translational (-6.0 mm to 6.2 mm), but non-rigid deformation still existed. NMI varied from 1.216±0.031 to 1.225±0.031 (P<0.005) before and after registration and the change of HD was from 46.384±7.698 to 45.691±8.089 (P<0.005). Conclusions The proposed algorithm can cope with different degrees of image missing and performs well in non-rigid registration with data missing images which can be applied in different radiotherapy technologies. It provides a reference idea for processing MV images with multi-modality, partial data and poor image quality.
Guan Qi,Qiu Minmin,Huang Taiming et al. A markerless beam's eye view tumor tracking algorithm based on structure conversion and demons registration in medical image[J]. Chinese Journal of Radiation Oncology, 2023, 32(4): 339-346.
[1] Vergalasova I, Cai J.A modern review of the uncertainties in volumetric imaging of respiratory-induced target motion in lung radiotherapy[J]. Med Phys, 2020,47(10):e988-e1008. DOI: 10.1002/mp.14312. [2] Lo KM, Wu VW, Li Y, et al.Factors affecting target motion in stereotactic body radiotherapy of liver cancer using CyberKnife[J]. J Med Imaging Radiat Oncol, 2020,64(3):408-413. DOI: 10.1111/1754-9485.13020. [3] Sande E, Acosta Roa AM, Hellebust TP.Dose deviations induced by respiratory motion for radiotherapy of lung tumors: impact of CT reconstruction, plan complexity, and fraction size[J]. J Appl Clin Med Phys, 2020,21(4):68-79. DOI: 10.1002/acm2.12847. [4] van Herk M. Errors and margins in radiotherapy[J]. Semin Radiat Oncol,2004,14(1):52-64. DOI: 10.1053/j.semradonc.2003.10.003. [5] McKenzie AL. How should breathing motion be combined with other errors when drawing margins around clinical target volumes?[J]. Br J Radiol, 2000,73(873):973-977. DOI: 10.1259/bjr.73.873.11064651. [6] Bezjak A, Rumble RB, Rodrigues G, et al.Intensity-modulated radiotherapy in the treatment of lung cancer[J]. Clin Oncol (R Coll Radiol), 2012,24(7):508-520. DOI: 10.1016/j.clon.2012.05.007. [7] Gerszten PC, Ozhasoglu C, Burton SA, et al. CyberKnife frameless stereotactic radiosurgery for spinal lesions: clinical experience in 125 cases[J]. Neurosurgery, 2004,55(1):89-98; discussion 98-99. [8] Harada T, Shirato H, Ogura S, et al.Real-time tumor-tracking radiation therapy for lung carcinoma by the aid of insertion of a gold marker using bronchofiberscopy[J]. Cancer, 2002,95(8):1720-1727. DOI: 10.1002/cncr.10856. [9] Patel R, Panfil J, Campana M, et al.Markerless motion tracking of lung tumors using dual-energy fluoroscopy[J]. Med Phys, 2015,42(1):254-262. DOI: 10.1118/1.4903892. [10] Bhagat N, Fidelman N, Durack JC, et al.Complications associated with the percutaneous insertion of fiducial markers in the thorax[J]. Cardiovasc Intervent Radiol, 2010,33(6):1186-1191. DOI: 10.1007/s00270-010-9949-0. [11] Nuyttens JJ, Prévost JB, Praag J, et al.Lung tumor tracking during stereotactic radiotherapy treatment with the CyberKnife: marker placement and early results[J]. Acta Oncol, 2006,45(7):961-965. DOI: 10.1080/028418606 00902205. [12] Mageras GS, Yorke E, Rosenzweig K, et al.Fluoroscopic evaluation of diaphragmatic motion reduction with a respiratory gated radiotherapy system[J]. J Appl Clin Med Phys, 2001,2(4):191-200. DOI: 10.1120/jacmp.v2i4.2596. [13] Naumann P, Batista V, Farnia B, et al.Feasibility of optical surface-guidance for position verification and monitoring of stereotactic body radiotherapy in deep-inspiration breath-hold[J]. Front Oncol, 2020,10:573279. DOI: 10.3389/fonc.2020.573279. [14] Seppenwoolde Y, Berbeco RI, Nishioka S, et al.Accuracy of tumor motion compensation algorithm from a robotic respiratory tracking system: a simulation study[J]. Med Phys, 2007,34(7):2774-2784. DOI: 10.1118/1.2739811. [15] Moutrie V, Kairn T, Rosenfeld A, et al.Use of a megavoltage electronic portal imaging device to identify prosthetic materials[J]. Australas Phys Eng Sci Med, 2015,38(1):93-100. DOI: 10.1007/s13246-015-0327-8. [16] Wu JZ, Lei P, Shekhar R, et al.Do tumors in the lung deform during normal respiration? An image registration investigation[J]. Int J Radiat Oncol Biol Phys, 2009,75(1):268-275. DOI: 10.1016/j.ijrobp.2009.03.008. [17] Thirion JP.Image matching as a diffusion process: an analogy with Maxwell's demons[J]. Med Image Anal, 1998,2(3):243-260. DOI: 10.1016/s1361-8415(98)80022-4. [18] Vercauteren T, Pennec X, Perchant A, et al.Non-parametric diffeomorphic image registration with the demons algorithm[J]. Med Image Comput Comput Assist Interv, 2007,10(Pt 2):319-326. DOI: 10.1007/978-3-540-75759-7_39. [19] Dempster A, Laird N, Rubin D.Maximum likelihood from incomplete data via the EM algorithm[J]. J R Stat Soc, 1977,39(1):1-22. DOI:10.1111/J.2517-6161.1977.TB01600.X. [20] Cui Y, Dy JG, Alexander B, et al.Fluoroscopic gating without implanted fiducial markers for lung cancer radiotherapy based on support vector machines[J]. Phys Med Biol, 2008,53(16):N315-327. DOI: 10.1088/0031-9155/53/16/N01. [21] Lin T, Cerviño LI, Tang XL, et al.Fluoroscopic tumor tracking for image-guided lung cancer radiotherapy[J]. Phys Med Biol, 2009,54(4):981-992. DOI: 10.1088/0031-9155/54/4/011. [22] Arimura H, Egashira Y, Shioyama Y, et al.Computerized method for estimation of the location of a lung tumor on EPID cine images without implanted markers in stereotactic body radiotherapy[J]. Phys Med Biol, 2009,54(3):665-677. DOI: 10.1088/0031-9155/54/3/013. [23] Rottmann J, Aristophanous M, Chen A, et al.A multi- region algorithm for markerless beam's-eye view lung tumor tracking[J]. Phys Med Biol, 2010,55(18):5585-5598. DOI: 10.1088/0031-9155/55/18/021. [24] Yang TJ, Tang Q, Li L, et al.Nonrigid registration of medical image based on adaptive local structure tensor and normalized mutual information[J]. J Appl Clin Med Phys, 2019,20(6):99-110. DOI: 10.1002/acm2.12612. [25] Deo RC.Machine learning in medicine[J]. Circulation, 2015,132(20):1920-1930. DOI: 10.1161/CIRCULATION AHA.115.001593.