Research progress on the application of radiomics in prognostic prediction of esophageal cancer
Yu Nuo, Wang Xin
Department of Radiation Oncology, National Cancer Center / National Clinical Research Center for Cancer / Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
Abstract:Esophageal cancer is a tumor with high morbidity and mortality in China, which is generally diagnosed at late stage and yields poor prognosis. Early diagnosis and correct staging are the basis, and reasonable treatment is the most important. Radiomics can make use of existing imaging resources for deeper mining, and make secondary use of its potential high-throughput data through deep learning or machine learning, thereby establishing a radiomics prediction model. This may become an essential marker of tumor prognosis to predict overall survival or tumor progression, thus stratifying patients at different risk for individualized treatment. In this article, the basic concepts of radiomics, its application in prognostic prediction of esophageal cancer and its combination with clinical and genetic studies were reviewed.
Yu Nuo,Wang Xin. Research progress on the application of radiomics in prognostic prediction of esophageal cancer[J]. Chinese Journal of Radiation Oncology, 2023, 32(4): 365-369.
[1] Bray F, Ferlay J, Soerjomataram I, et al.Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA Cancer J Clin, 2018,68(6):394-424. DOI: 10.3322/caac.21492. [2] GBD 2017 Oesophageal Cancer Collaborators. The global, regional, and national burden of oesophageal cancer and its attributable risk factors in 195 countries and territories, 1990-2017: a systematic analysis for the global burden of disease study 2017BD 2017 Oesophageal Cancer Collaborators. The global, regional, and national burden of oesophageal cancer and its attributable risk factors in 195 countries and territories, 1990-2017: a systematic analysis for the global burden of disease study 2017[J]. Lancet Gastroenterol Hepatol, 2020,5(6):582-597. DOI: 10.1016/S2468-1253(20)30007-8. [3] Rice TW, Rusch VW, Apperson-Hansen C, et al.Worldwide esophageal cancer collaboration[J]. Dis Esophagus, 2009,22(1):1-8. DOI: 10.1111/j.1442-2050.2008.00901.x. [4] Cooper JS, Guo MD, Herskovic A, et al.Chemoradiotherapy of locally advanced esophageal cancer: long-term follow-up of a prospective randomized trial (RTOG 85-01). Radiation Therapy Oncology Group[J]. JAMA, 1999,281(17):1623-1627. DOI: 10.1001/jama.281.17. 1623. [5] Tepper J, Krasna MJ, Niedzwiecki D, et al.Phase III trial of trimodality therapy with cisplatin, fluorouracil, radiotherapy, and surgery compared with surgery alone for esophageal cancer: CALGB 9781[J]. J Clin Oncol, 2008,26(7):1086-1092. DOI: 10.1200/JCO.2007.12.9593. [6] Shapiro J, van Lanschot J, Hulshof M, et al. Neoadjuvant chemoradiotherapy plus surgery versus surgery alone for oesophageal or junctional cancer (CROSS): long-term results of a randomised controlled trial[J]. Lancet Oncol, 2015,16(9):1090-1098. DOI: 10.1016/S1470-2045(15)00040-6. [7] Lambin P, Rios-Velazquez E, Leijenaar R, et al.Radiomics: extracting more information from medical images using advanced feature analysis[J]. Eur J Cancer, 2012,48(4):441-446. DOI: 10.1016/j.ejca.2011.11.036. [8] Xie CY, Pang CL, Chan B, et al.Machine learning and radiomics applications in esophageal cancers using non-invasive imaging methods-a critical review of literature[J]. Cancers (Basel), 2021,13(10):2469. DOI: 10.3390/cancers13102469. [9] Nakajo M, Jinguji M, Nakabeppu Y, et al.Texture analysis of 18F-FDG PET/CT to predict tumour response and prognosis of patients with esophageal cancer treated by chemoradiotherapy[J]. Eur J Nucl Med Mol Imaging, 2017,44(2):206-214. DOI: 10.1007/s00259-016-3506-2. [10] Li YM, Beck M, Päßler T, et al.A FDG-PET radiomics signature detects esophageal squamous cell carcinoma patients who do not benefit from chemoradiation[J]. Sci Rep, 2020,10(1):17671. DOI: 10.1038/s41598-020-74 701-w. [11] Xiong JF, Yu W, Ma JC, et al.The role of PET-based radiomic features in predicting local control of esophageal cancer treated with concurrent chemoradiotherapy[J]. Sci Rep, 2018,8(1):9902. DOI: 10. 1038/s41598-018-28243-x. [12] Foley KG, Shi Z, Whybra P, et al.External validation of a prognostic model incorporating quantitative PET image features in oesophageal cancer[J]. Radiother Oncol, 2019,133:205-212. DOI: 10.1016/j.radonc.2018.10.033. [13] Foley KG, Hills RK, Berthon B, et al.Development and validation of a prognostic model incorporating texture analysis derived from standardised segmentation of PET in patients with oesophageal cancer[J]. Eur Radiol, 2018,28(1):428-436. DOI: 10.1007/s00330-017-4973-y. [14] Paul D, Su R, Romain M, et al.Feature selection for outcome prediction in oesophageal cancer using genetic algorithm and random forest classifier[J]. Comput Med Imaging Graph, 2017,60:42-49. DOI: 10.1016/j.compmedimag.2016.12.002. [15] Xie CY, Yang PF, Zhang XB, et al.Sub-region based radiomics analysis for survival prediction in oesophageal tumours treated by definitive concurrent chemoradiotherapy[J]. EBioMedicine, 2019,44:289-297. DOI: 10.1016/j.ebiom.2019.05.023. [16] Lu N, Zhang WJ, Dong L, et al.Dual-region radiomics signature: Integrating primary tumor and lymph node computed tomography features improves survival prediction in esophageal squamous cell cancer[J]. Comput Methods Programs Biomed, 2021,208:106287. DOI: 10.1016/j.cmpb.2021.106287. [17] Larue R, Klaassen R, Jochems A, et al.Pre-treatment CT radiomics to predict 3-year overall survival following chemoradiotherapy of esophageal cancer[J]. Acta Oncol, 2018,57(11):1475-1481. DOI: 10.1080/0284186 X.2018.1486039. [18] Qiu QT, Duan JH, Deng HB, et al.Development and validation of a radiomics nomogram model for predicting postoperative recurrence in patients with esophageal squamous cell cancer who achieved pCR after neoadjuvant chemoradiotherapy followed by surgery[J]. Front Oncol, 2020,10:1398. DOI: 10.3389/fonc.2020. 01398. [19] Tang S, Ou J, Liu J, et al.Application of contrast-enhanced CT radiomics in prediction of early recurrence of locally advanced oesophageal squamous cell carcinoma after trimodal therapy[J]. Cancer Imaging, 2021,21(1):38. DOI: 10.1186/s40644-021-00407-5. [20] Yan ZM, Zhang JQ, Long H, et al.Correlation of CT texture changes with treatment response during radiation therapy for esophageal cancer: an exploratory study[J]. PLoS One, 2019,14(9):e0223140. DOI: 10.1371/journal.pone.0223140. [21] Lee SL, Yadav P, Starekova J, et al.Diagnostic performance of MRI for esophageal carcinoma: a systematic review and meta-analysis[J]. Radiology, 2021,299(3):583-594. DOI: 10.1148/radiol.2021202857. [22] Leeflang M.The accuracy of MRI for esophageal cancer staging[J]. Radiology, 2021,299(3):595-596. DOI: 10.1148/radiol.2021210374. [23] Borggreve AS, Goense L, van Rossum P, et al. Preoperative prediction of pathologic response to neoadjuvant chemoradiotherapy in patients with esophageal cancer using 18F-FDG PET/CT and DW-MRI: a prospective multicenter study[J]. Int J Radiat Oncol Biol Phys, 2020,106(5):998-1009. DOI: 10.1016/j.ijrobp.2019.12.038. [24] Hirata A, Hayano K, Ohira G, et al.Volumetric histogram analysis of apparent diffusion coefficient as a biomarker to predict survival of esophageal cancer patients[J]. Ann Surg Oncol, 2020,27(8):3083-3089. DOI: 10.1245/s10434-020-08270-7. [25] Hirata A, Hayano K, Ohira G, et al.Volumetric histogram analysis of apparent diffusion coefficient for predicting pathological complete response and survival in esophageal cancer patients treated with chemoradiotherapy[J]. Am J Surg, 2020,219(6):1024-1029. DOI: 10.1016/j.amjsurg.2019.07.040. [26] Gravalos C, Jimeno A.HER2 in gastric cancer: a new prognostic factor and a novel therapeutic target[J]. Ann Oncol, 2008,19(9):1523-1529. DOI: 10.1093/annonc/mdn169. [27] Janjigian YY, Sanchez-Vega F, Jonsson P, et al.Genetic predictors of response to systemic therapy in esophagogastric cancer[J]. Cancer Discov, 2018,8(1):49-58. DOI: 10.1158/2159-8290.CD-17-0787. [28] Coombes RC, Page K, Salari R, et al.Personalized detection of circulating tumor DNA antedates breast cancer metastatic recurrence[J]. Clin Cancer Res, 2019,25(14):4255-4263. DOI: 10.1158/1078-0432.CCR-18- 3663. [29] Haldrup C, Pedersen AL, Øgaard N, et al.Biomarker potential of ST6GALNAC3 and ZNF660 promoter hypermethylation in prostate cancer tissue and liquid biopsies[J]. Mol Oncol, 2018,12(4):545-560. DOI: 10.1002/1878-0261.12183. [30] Tsui D, Murtaza M, Wong A, et al. Dynamics of multiple resistance mechanisms in plasma DNA during EGFR-targeted therapies in non-small cell lung cancer[J]. EMBO Mol Med, 2018,10(6)DOI: 10.15252/emmm. 201707945. [31] Tie J, Wang Y, Tomasetti C, et al. Circulating tumor DNA analysis detects minimal residual disease and predicts recurrence in patients with stage II colon cancer[J]. Sci Transl Med, 2016,8(346):346ra92. DOI: 10.1126/scitranslmed.aaf6219. [32] Ococks E, Frankell AM, Masque Soler N, et al.Longitudinal tracking of 97 esophageal adenocarcinomas using liquid biopsy sampling[J]. Ann Oncol, 2021,32(4):522-532. DOI: 10.1016/j.annonc.2020.12.010. [33] Iwaya T, Endo F, Takahashi F, et al. Frequent tumor burden monitoring of esophageal squamous cell carcinoma with circulating tumor DNA using individually designed digital polymerase chain reaction[J]. Gastroenterology, 2021,160(1):463-465.e4. DOI: 10.105 3/j.gastro.2020.09.035. [34] Aoyagi T, Shuto K, Okazumi S, et al.Apparent diffusion coefficient correlation with oesophageal tumour stroma and angiogenesis[J]. Eur Radiol, 2012,22(6):1172-1177. DOI: 10.1007/s00330-011-2359-0. [35] Chen Y, Xie TM, Ye ZM, et al.ADC correlation with Sirtuin1 to assess early chemoradiotherapy response of locally advanced esophageal carcinoma patients[J]. Radiat Oncol, 2019,14(1):192. DOI: 10.1186/s13014-019-1393-y. [36] Wen Q, Yang Z, Zhu J, et al.Pretreatment CT-based radiomics signature as a potential imaging biomarker for predicting the expression of PD-L1 and CD8+TILs in ESCC[J]. Onco Targets Ther, 2020,13:12003-12013. DOI: 10.2147/OTT.S261068. [37] Beukinga RJ, Wang D, Karrenbeld A, et al.Addition of HER2 and CD44 to 18F-FDG PET-based clinico-radiomic models enhances prediction of neoadjuvant chemoradiotherapy response in esophageal cancer[J]. Eur Radiol, 2021,31(5):3306-3314. DOI: 10.1007/s00330- 020-07439-8. [38] Moons KG, Altman DG, Reitsma JB, et al.Transparent reporting of a multivariable prediction model for individual prognosis or diagnosis (TRIPOD): explanation and elaboration[J]. Ann Intern Med, 2015,162(1):W1-73. DOI: 10.7326/M14-0698.