Use of magnetic resonance scanner with a linear accelerator during precision radiotherapy for breast cancer
Wang Wei1, Li Zhenjiang2, Li Jianbin1
1Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Ji'nan 250117, China; 2Department of Medical Physics, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Ji'nan 250117, China
Abstract:Magnetic resonance-guided radiotherapy (MRgRT) not only offers real time magnetic resonance (MR) imags with high-resolution and good soft tissue contrast to guide the delineation of the target volume during simulation and daily radiotherapy, but also reveals the position and shape changes of the target volumes and organs at risk (OAR) during treatment dynamically, which provides the evidence for the individual-adptive planning revision. Thus, MRgRT has the potential to dramatically impact cancer research and treatment. And this treatment mode is theoretically more suitable for the disease with obvious tissue deformation, such as breast. In this review, application of MR scanner with a linear accelerator (MR-linac) in radiotherapy workflows for breast cancer patients was summarized, and its implications and opportunities on breast cancer irradiation were highlighted.
Wang Wei,Li Zhenjiang,Li Jianbin. Use of magnetic resonance scanner with a linear accelerator during precision radiotherapy for breast cancer[J]. Chinese Journal of Radiation Oncology, 2023, 32(5): 464-469.
[1] Landry G, Hua CH.Current state and future applications of radiological image guidance for particle therapy[J]. Med Phys, 2018,45(11):e1086-e1095. DOI: 10.1002/mp.12744.
[2] Nabavizadeh N, Elliott DA, Chen YY, et al.Image guided radiation therapy (IGRT) practice patterns and IGRT's impact on workflow and treatment planning: results from a national survey of American society for radiation oncology members[J]. Int J Radiat Oncol Biol Phys, 2016,94(4):850-857. DOI: 10.1016/j.ijrobp.2015.09.035.
[3] Henke LE, Contreras JA, Green OL, et al.Magnetic resonance image-guided radiotherapy (MRIgRT): a 4.5-year clinical experience[J]. Clin Oncol (R Coll Radiol), 2018,30(11):720-727. DOI: 10.1016/j.clon.2018.08.010.
[4] Nachbar M, Mönnich D, Boeke S, et al.Partial breast irradiation with the 1.5 T MR-linac: first patient treatment and analysis of electron return and stream effects[J]. Radiother Oncol, 2020,145:30-35. DOI: 10.1016/j.radonc.2019.11.025.
[5] Elliott S, Berlangieri A, Wasiak J, et al.Use of magnetic resonance imaging-guided radiotherapy for breast cancer: a scoping review protocol[J]. Syst Rev, 2021,10(1):44. DOI: 10.1186/s13643-021-01594-9.
[6] Hall WA, Paulson ES, van der Heide UA, et al. The transformation of radiation oncology using real-time magnetic resonance guidance: a review[J]. Eur J Cancer, 2019,122:42-52. DOI: 10.1016/j.ejca.2019.07.021.
[7] Giezen M, Kouwenhoven E, Scholten AN, et al.Magnetic resonance imaging- versus computed tomography-based target volume delineation of the glandular breast tissue (clinical target volume breast) in breast-conserving therapy: an exploratory study[J]. Int J Radiat Oncol Biol Phys, 2011,81(3):804-811. DOI: 10.1016/j.ijrobp.2010.07.004.
[8] Xu M, Li JB, Liu SS, et al.Different methods for target volume delineation of glandular breast tissue following breast-conserving surgery in breast cancer: a comparative study[J]. Oncol Lett, 2015,10(2):625-630. DOI: 10.3892/ol.2015.3358.
[9] Pogson EM, Delaney GP, Ahern V, et al.Comparison of magnetic resonance imaging and computed tomography for breast target volume delineation in prone and supine positions[J]. Int J Radiat Oncol Biol Phys, 2016,96(4):905-912. DOI: 10.1016/j.ijrobp.2016.08.002.
[10] Lowrey N, Koch CA, Purdie T, et al.Magnetic resonance imaging for breast tumor bed delineation: computed tomography comparison and sequence variation[J]. Adv Radiat Oncol, 2021,6(4):100727. DOI: 10.1016/j.adro.2021.100727.
[11] Zhao CH, Li JB, Wang W, et al.DE-MR simulation imaging for prone radiotherapy after breast-conserving surgery: assessing its application in lumpectomy cavity delineation based on deformable image registration[J]. Radiat Oncol, 2021,16(1):91. DOI: 10.1186/s13014-021-01817-2.
[12] Giezen M, Kouwenhoven E, Scholten AN, et al.MRI- versus CT-based volume delineation of lumpectomy cavity in supine position in breast-conserving therapy: an exploratory study[J]. Int J Radiat Oncol Biol Phys, 2012,82(4):1332-1340. DOI: 10.1016/j.ijrobp.2011.05.008.
[13] Pogson EM, Delaney GP, Ahern V, et al.Comparison of magnetic resonance imaging and computed tomography for breast target volume delineation in prone and supine positions[J]. Int J Radiat Oncol Biol Phys, 2016,96(4):905-912. DOI: 10.1016/j.ijrobp.2016.08.002.
[14] Lowrey N, Koch CA, Purdie T, et al.Magnetic resonance imaging for breast tumor bed delineation: computed tomography comparison and sequence variation[J]. Adv Radiat Oncol, 2021,6(4):100727. DOI: 10.1016/j.adro.2021.100727.
[15] Al-Hammadi N, Caparrotti P, Divakar S, et al.MRI reduces variation of contouring for boost clinical target volume in breast cancer patients without surgical clips in the tumour bed[J]. Radiol Oncol, 2017,51(2):160-168. DOI: 10.1515/raon-2017-0014.
[16] Musunuru HB, Yadav P, Olson SJ, et al.Improved ipsilateral breast and chest wall sparing with mr-guided 3-fraction accelerated partial breast irradiation: a dosimetric study comparing MR-linac and CT-linac plans[J]. Adv Radiat Oncol, 2021,6(3):100654. DOI: 10.1016/j.adro.2021.100654.
[17] Groot Koerkamp ML, Vasmel JE, Russell NS, et al.Optimizing MR-guided radiotherapy for breast cancer patients[J]. Front Oncol, 2020,10:1107. DOI: 10.3389/fonc.2020.01107.
[18] Werensteijn-Honingh AM, Kroon PS, Winkel D, et al.Feasibility of stereotactic radiotherapy using a 1.5 T MR-linac: multi-fraction treatment of pelvic lymph node oligometastases[J]. Radiother Oncol, 2019,134:50-54. DOI: 10.1016/j.radonc.2019.01.024.
[19] Raaijmakers AJ, Raaymakers BW, van der Meer S, et al. Integrating a MRI scanner with a 6 MV radiotherapy accelerator: impact of the surface orientation on the entrance and exit dose due to the transverse magnetic field[J]. Phys Med Biol, 2007,52(4):929-939. DOI: 10.1088/0031-9155/52/4/005.
[20] An HJ, Kim JI, Park JM.Electron streams in air during magnetic-resonance image-guided radiation therapy[J]. PLoS One, 2019,14(5):e0216965. DOI: 10.1371/journal.pone.0216965.
[21] De-Colle C, Nachbar M, Mӧnnich D, et al.Analysis of the electron-stream effect in patients treated with partial breast irradiation using the 1.5 T MR-linear accelerator[J]. Clin Transl Radiat Oncol, 2021,27:103-108. DOI: 10.1016/j.ctro.2020.12.005.
[22] Berlangieri A, Elliott S, Wasiak J, et al.Use of magnetic resonance image-guided radiotherapy for breast cancer: a scoping review[J]. J Med Radiat Sci, 2022,69(1):122-133. DOI: 10.1002/jmrs.545.
[23] Acharya S, Fischer-Valuck BW, Mazur TR, et al.Magnetic resonance image guided radiation therapy for external beam accelerated partial-breast irradiation: evaluation of delivered dose and intrafractional cavity motion[J]. Int J Radiat Oncol Biol Phys, 2016,96(4):785-792. DOI: 10.1016/j.ijrobp.2016.08.006.
[24] Jagsi R, Ben-David MA, Moran JM, et al.Unacceptable cosmesis in a protocol investigating intensity-modulated radiotherapy with active breathing control for accelerated partial-breast irradiation[J]. Int J Radiat Oncol Biol Phys, 2010,76(1):71-78. DOI: 10.1016/j.ijrobp.2009.01.041.
[25] Musunuru HB, Yadav P, Olson SJ, et al.Improved ipsilateral breast and chest wall sparing with MR-guided 3-fraction accelerated partial breast irradiation: a dosimetric study comparing MR-linac and CT-linac plans[J]. Adv Radiat Oncol, 2021,6(3):100654. DOI: 10.1016/j.adro.2021.100654.
[26] Groot Koerkamp ML, van der Leij F, van 't Westeinde T, et al. Prone vs. supine accelerated partial breast irradiation on an MR-linac: a planning study[J]. Radiother Oncol, 2021,165:193-199. DOI: 10.1016/j.radonc.2021.11.001.
[27] van der Leij F, Elkhuizen PH, Janssen TM, et al. Target volume delineation in external beam partial breast irradiation: less inter-observer variation with preoperative- compared to postoperative delineation[J]. Radiother Oncol, 2014,110(3):467-470. DOI: 10.1016/j.radonc.2013.10.033.
[28] Nichols E, Kesmodel SB, Bellavance E, et al.Preoperative accelerated partial breast irradiation for early-stage breast cancer: preliminary results of a prospective, phase 2 trial[J]. Int J Radiat Oncol Biol Phys, 2017,97(4):747-753. DOI: 10.1016/j.ijrobp.2016.11.030.
[29] Vasmel JE, Groot Koerkamp ML, Kirby AM, et al.Consensus on contouring primary breast tumors on MRI in the setting of neoadjuvant partial breast irradiation in trials[J]. Pract Radiat Oncol, 2020,10(6):e466-e474. DOI: 10.1016/j.prro.2020.03.011.
[30] Palta M, Yoo S, Adamson JD, et al.Preoperative single fraction partial breast radiotherapy for early-stage breast cancer[J]. Int J Radiat Oncol Biol Phys, 2012,82(1):37-42. DOI: 10.1016/j.ijrobp.2010.09.041.
[31] Charaghvandi KR, Van't Westeinde T, Yoo S, et al. Single dose partial breast irradiation using an MRI linear accelerator in the supine and prone treatment position[J]. Clin Transl Radiat Oncol, 2019,14:1-7. DOI: 10.1016/j.ctro.2018.09.001.
[32] Kennedy W, Thomas MA, DeBroeck KR, et al. Postoperative single-fraction partial breast irradiation for low-risk stage 0 and I breast carcinomas: results of a prospective clinical trial[J]. Int J Radiat Oncol Biol Phys, 2018, 102(3):S227-S228. DOI: 10.1016/j.ijrobp.2018.07.159.
[33] Dinkla AM, Florkow MC, Maspero M, et al.Dosimetric evaluation of synthetic CT for head and neck radiotherapy generated by a patch-based three-dimensional convolutional neural network[J]. Med Phys, 2019,46(9):4095-4104. DOI: 10.1002/mp.13663.
[34] Borman P, Tijssen R, Bos C, et al.Characterization of imaging latency for real-time MRI-guided radiotherapy[J]. Phys Med Biol, 2018,63(15):155023. DOI: 10.1088/1361-6560/aad2b7.