Abstract:Deterministic method is a numerical calculation method based on photon-electron coupled transport with high computational accuracy and speed, which has been widely applied in photon radiotherapy dose calculation in recent years. However, this method has been introduced into radiotherapy for only a short period of time, which has been rarely studied in China, and systematic understanding of its characteristics is still lacking. In this article, the principles of deterministic method, current development state and clinical application were reviewed, aiming to provide reference for carrying out relevant research.
Song Hongbing,Yang Xiong,Li Xiangpan. Deterministic method of photon radiotherapy dose calculation[J]. Chinese Journal of Radiation Oncology, 2023, 32(4): 375-378.
[1] Khan FM, Gibbons JP, Sperduto PW. Khan'S Treatment Planning In Radiation Oncology[M]. 4th ed. Philadelphia: Wolters Kluwer, 2016: 92-111. [2] Fogliata A, Cozzi L. Dose calculation algorithm accuracy for small fields in non-homogeneous media: the lung SBRT case[J]. Phys Med, 2017,44:157-162. DOI: 10.1016/j.ejmp.2016.11.104. [3] Clements M, Schupp N, Tattersall M, et al. Monaco treatment planning system tools and optimization processes[J]. Med Dosim, 2018,43(2):106-117. DOI: 10.1016/j.meddos.2018.02.005. [4] Richmond N, Angerud A, Tamm F, et al. Comparison of the RayStation photon Monte Carlo dose calculation algorithm against measured data under homogeneous and heterogeneous irradiation geometries[J]. Phys Med, 2021,82:87-99. DOI: 10.1016/j.ejmp.2021.02.002. [5] Daskalov GM, Baker RS, Rogers DW, et al. Dosimetric modeling of the microselectron high-dose rate 192Ir source by the multigroup discrete ordinates method[J]. Med Phys, 2000,27(10):2307-2319. DOI: 10.1118/1.1308279. [6] Daskalov GM, Baker RS, Rogers DW, et al. Multigroup discrete ordinates modeling of 125I6702 seed dose distributions using a broad energy-group cross section representation[J]. Med Phys, 2002,29(2):113-124. DOI: 10.1118/1.1429238. [7] Gifford KA, Horton JL, Wareing TA, et al. Comparison of a finite-element multigroup discrete-ordinates code with Monte Carlo for radiotherapy calculations[J]. Phys Med Biol, 2006,51(9):2253-2265. DOI: 10.1088/0031-9155/51/9/010. [8] Gifford KA, Price MJ, Horton JL, et al. Optimization of deterministic transport parameters for the calculation of the dose distribution around a high dose-rate 192Ir brachytherapy source[J]. Med Phys, 2008,35(6):2279-2285. DOI: 10.1118/1.2919074. [9] Vassiliev ON, Wareing TA, Davis IM, et al. Feasibility of a multigroup deterministic solution method for three-dimensional radiotherapy dose calculations[J]. Int J Radiat Oncol Biol Phys, 2008,72(1):220-227. DOI: 10.1016/j.ijrobp.2008.04.057. [10] Vassiliev ON, Wareing TA, McGhee J, et al. Validation of a new grid-based Boltzmann equation solver for dose calculation in radiotherapy with photon beams[J]. Phys Med Biol, 2010,55(3):581-598. DOI: 10.1088/0031-9155/55/3/002. [11] Failla GA, Wareing T, Archambault Y, et al.Acuros XB advanced dose calculations for the eclipse treatment planning system[R]. Palo Alto, CA: Varian Medical Systems, 2010. [12] Börgers C. Complexity of Monte Carlo and deterministic dose-calculation methods[J]. Phys Med Biol, 1998,43(3):517-528. DOI: 10.1088/0031-9155/43/3/004. [13] Kotiluoto P, Pyyry J, Helminen H. MultiTrans SP3 code in coupled photon-electron transport problems[J]. Radiat Phys Chem, 2007,76:9-14. DOI: 10.1016/j.radphyschem. 2006.04.004. [14] Williams ML, Ilas D, Sajo E, et al. Deterministic photon transport calculations in general geometry for external beam radiation therapy[J]. Med Phys, 2003,30(12):3183-3195. DOI: 10.1118/1.1621135. [15] St Aubin J, Keyvanloo A, Vassiliev O, et al. A deterministic solution of the first order linear Boltzmann transport equation in the presence of external magnetic fields[J]. Med Phys, 2015,42(2):780-793. DOI: 10.1118/1.4905041. [16] Yang R, Santos DM, Fallone BG, et al.A novel transport sweep architecture for efficient deterministic patient dose calculations in MRI-guided radiotherapy[J]. Phys Med Biol, 2019,64(18):185012. DOI: 10.1088/1361-6560/ab35bc. [17] Yang R, Santos DM, Fallone BG, et al.Feasibility of energy adaptive angular meshing for perpendicular and parallel magnetic fields in a grid based Boltzmann solver[J]. Biomed Phys Eng Express, 2020,6(2):025006. DOI: 10.1088/2057-1976/ab6e15. [18] Caron J, Feugeas JL, Dubroca B, et al. Deterministic model for the transport of energetic particles: application in the electron radiotherapy[J]. Phys Med, 2015,31(8):912-921. DOI: 10.1016/j.ejmp.2015.07.148. [19] Birindelli G, Feugeas JL, Caron J, et al. High performance modelling of the transport of energetic particles for photon radiotherapy[J]. Phys Med, 2017,42:305-312. DOI: 10.1016/j.ejmp.2017.06.020. [20] Page J, Nicolaï P, Birindelli G, et al. Introduction of external magnetic fields in entropic moment modelling for radiotherapy[J]. Phys Med, 2017,42:313-318. DOI: 10.1016/j.ejmp.2017.06.007. [21] Pichard T, Alldredge GW, Brull S, et al. An approximation of the M2 closure: application to radiotherapy dose simulation[J]. J Sci Comput, 2017,71(1):71-108. DOI: 10.1007/s10915-016-0292-8. [22] Aland T, Walsh A, Jones M, et al. Accuracy and efficiency of graphics processing unit (GPU) based Acuros XB dose calculation within the Varian Eclipse treatment planning system[J]. Med Dosim, 2019,44(3):219-225. DOI: 10.1016/j.meddos.2018.07.002. [23] Han T, Mikell JK, Salehpour M, et al. Dosimetric comparison of Acuros XB deterministic radiation transport method with Monte Carlo and model-based convolution methods in heterogeneous media[J]. Med Phys, 2011,38(5):2651-2664. DOI: 10.1118/1.3582690. [24] Rana S, Rogers K, Pokharel S, et al.Evaluation of Acuros XB algorithm based on RTOG 0813 dosimetric criteria for SBRT lung treatment with RapidArc[J]. J Appl Clin Med Phys, 2014,15(1):4474. DOI: 10.1120/jacmp.v15i1.4474. [25] Rana S, Rogers K, Lee T, et al. Verification and dosimetric impact of Acuros XB algorithm for stereotactic body radiation therapy (SBRT) andRapidArc planning for non-small-cell lung cancer (NSCLC) patients[J]. Int J Med Phys Clin Eng Radiat Onc, 2013,2(1):6-14. DOI: 10.4236/ijmpcero.2013.21002. [26] Fogliata A, Nicolini G, Clivio A, et al. Critical appraisal of Acuros XB and Anisotropic Analytic Algorithm dose calculation in advanced non-small-cell lung cancer treatments[J]. Int J Radiat Oncol Biol Phys, 2012,83(5):1587-1595. DOI: 10.1016/j.ijrobp.2011.10.078. [27] Kroon PS, Hol S, Essers M.Dosimetric accuracy and clinical quality of Acuros XB and AAA dose calculation algorithm for stereotactic and conventional lung volumetric modulated arc therapy plans[J]. Radiat Oncol, 2013,8:149. DOI: 10.1186/1748-717X-8-149. [28] Han T, Followill D, Mikell J, et al.Dosimetric impact of Acuros XB deterministic radiation transport algorithm for heterogeneous dose calculation in lung cancer[J]. Med Phys, 2013,40(5):051710. DOI: 10.1118/1.4802216. [29] Padmanaban S, Warren S, Walsh A, et al.Comparison of Acuros (AXB) and anisotropic analytical algorithm (AAA) for dose calculation in treatment of oesophageal cancer: effects on modelling tumour control probability[J]. Radiat Oncol, 2014,9:286. DOI: 10.1186/s13014-014-0286-3. [30] Rana S, Rogers KL, Pokharel S, et al. Acuros XB algorithm vs. anisotropic analytical algorithm: a dosimetric study using heterogeneous phantom and computed tomography (CT) data sets of esophageal cancer patients[J]. J Cancer Ther, 2013,4(1):138-144. DOI: 10.4236/jct. 2013.41019. [31] Fogliata A, Nicolini G, Clivio A, et al.On the dosimetric impact of inhomogeneity management in the Acuros XB algorithm for breast treatment[J]. Radiat Oncol, 2011,6:103. DOI: 10.1186/1748-717X-6-103. [32] Kumar L, Kishore V, Bhushan M, et al. Impact of acuros XB algorithm in deep-inspiration breath-hold (DIBH) respiratory techniques used for the treatment of left breast cancer[J]. Rep Pract Oncol Radiother, 2020,25(4):507-514. DOI: 10.1016/j.rpor.2020.04.011. [33] Guebert A, Conroy L, Weppler S, et al. Clinical implementation of AXB from AAA for breast: Plan quality and subvolume analysis[J]. J Appl Clin Med Phys, 2018,19(3):243-250. DOI: 10.1002/acm2.12329. [34] Kan MW, Leung LH, Yu PK. Verification and dosimetric impact of Acuros XB algorithm on intensity modulated stereotactic radiotherapy for locally persistent nasopharyngeal carcinoma[J]. Med Phys, 2012,39(8):4705-4714. DOI: 10.1118/1.4736819. [35] Kan MW, Leung LH, Yu PK. Dosimetric impact of using the Acuros XB algorithm for intensity modulated radiation therapy and RapidArc planning in nasopharyngeal carcinomas[J]. Int J Radiat Oncol Biol Phys, 2013,85(1):e73-80. DOI: 10.1016/j.ijrobp.2012.08.031. [36] Takizawa T, Tanabe S, Utsunomiya S, et al. Dosimetric comparison of analytic anisotropic algorithm and Acuros XB algorithm in VMAT plans for high-grade glioma[J]. Phys Med, 2020,73:73-82. DOI: 10.1016/j.ejmp.2020. 04.007. [37] Ojala J, Kapanen M, Sipilä P, et al.The accuracy of Acuros XB algorithm for radiation beams traversing a metallic hip implant - comparison with measurements and Monte Carlo calculations[J]. J Appl Clin Med Phys, 2014,15(5):4912. DOI: 10.1120/jacmp.v15i5.4912. [38] Zhen HM, Hrycushko B, Lee H, et al. Dosimetric comparison of Acuros XB with collapsed cone convolution/superposition and anisotropic analytic algorithm for stereotactic ablative radiotherapy of thoracic spinal metastases[J]. J Appl Clin Med Phys, 2015,16(4):181-192. DOI: 10.1120/jacmp.v16i4.5493. [39] Adas Y, Yazici O, Kekilli E, et al. Stereotactic radiotherapy for patients withs metallic implants on vertebral body: a dosimetric comparison[J]. Med Sci Discov, 2018,5(3):161-165. DOI: 10.17546/msd.400187. [40] Hughes J, Lye JE, Kadeer F, et al. Calculation algorithms and penumbra: Underestimation of dose in organs at risk in dosimetry audits[J]. Med Phys, 2021,48(10):6184-6197. DOI: 10.1002/mp.15123.