[an error occurred while processing this directive]|[an error occurred while processing this directive]
鼻咽癌免疫治疗进展
周凤格, 易俊林
国家癌症中心/国家肿瘤临床医学研究中心/中国医学科学院北京协和医学院肿瘤医院放疗科 100021
Research progress on immunotherapy for nasopharyngeal carcinoma
Zhou Fengge, Yi Junlin
Department of Radiation Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
Abstract:Nasopharyngeal carcinoma (NPC) is a malignant carcinoma that is closely associated with Epstein Barr virus (EBV) infection. After the comprehensive treatment based on modern intensity-modulated radiation therapy, the oncological outcomes can be further improved. The main target of treatment is to increase the efficacy ofpatients with high risk and recurrent/metastatic (R/M) NPC.Recently, continuous progress has been made in the application of immunotherapy in the field of cancer treatment. Based on the accumulated knowledge on EBV antigen and immune checkpoint inhibitors, significant progress has been made in use of immunotherapy in treating R/M-NPC. Immunotherapy combined with radiotherapy or chemoradiotherapy will become the hot spot in the clinical management of patients with newly-diagnosed high-risk NPC.
Zhou Fengge,Yi Junlin. Research progress on immunotherapy for nasopharyngeal carcinoma[J]. Chinese Journal of Radiation Oncology, 2021, 30(4): 407-412.
[1] Tsao SW, Tsang CM, Lo KW. Epstein-Barr virus infection and nasopharyngeal carcinoma[J]. Philos Trans R Soc Lond B Biol Sci, 2017, 372(1732):20160270. DOI:10.1098/rstb.2016.0270. [2] Mao YP, Xie FY, Liu LZ, et al. Re-evaluation of 6th edition of AJCC staging system for nasopharyngeal carcinoma and proposed improvement based on magnetic resonance imaging[J]. Int J Radiat Oncol Biol Phys, 2009, 73(5):1326-1334. DOI:10.1016/j.ijrobp.2008.07.062. [3] Chen L, Zhang Y, Lai SZ, et al. 10-year results of therapeutic ratio by intensity-modulated radiotherapy versus two-dimensional radiotherapy in patients with nasopharyngeal carcinoma[J]. Oncologist, 2019, 24(1):e38-e45. DOI:10.1634/theoncologist.2017-0577. [4] Lee AZE, Tan LSY, Lim CM. Cellular-based immunotherapy in Epstein-Barr virus induced nasopharyngeal cancer[J]. Oral Oncol, 2018, 84(1):61-70. DOI:10.1016/j.oraloncology.2018.07.011. [5] Jiang L, Xie C, Lung HL, et al. EBNA1-targeted inhibitors:novel approaches for the treatment of Epstein-Barr virus-associated cancers[J]. Theranostics, 2018, 8(19):5307-5319. DOI:10.7150/thno.26823. [6] Young LS, Yap LF, Murray PG. Epstein-Barr virus:more than 50 years old and still providing surprises[J]. Nat Rev Cancer, 2016, 16(12):789-802. DOI:10.1038/nrc.2016.92. [7] Smith C, Wakisaka N, Crough T, et al. Discerning regulation of cis-and trans-presentation of CD+8 T-cell epitopes by EBV-encoded oncogene LMP-1 through self-aggregation[J]. Blood, 2009, 113(24):6148-6152. DOI:10.1182/blood-2009-02-203687. [8] Munz C, Bickham KL, Subklewe M, et al. Human CD4(+) T lymphocytes consistently respond to the latent Epstein-Barr virus nuclear antigen EBNA1[J]. J Exp Med, 2000, 191(10):1649-1660. DOI:10.1084/jem.191.10.1649. [9] Agathanggelou A, Niedobitek G, Chen R, et al. Expression of immune regulatory molecules in Epstein-Barr virus-associated nasopharyngeal carcinomas with prominent lymphoid stroma. Evidence for a functional interaction between epithelial tumor cells and infiltrating lymphoid cells[J]. Am J Pathol, 1995, 147(4):1152-1160. [10] Houot R, Schultz LM, Marabelle A, et al. T-cell-based immunotherapy:adoptive cell transfer and checkpoint inhibition[J]. Cancer Immunol Res, 2015, 3(10):1115-1122. DOI:10.1158/2326-6066. CIR-15-0190. [11] Li J, Chen Q-Y, He J, et al. Phase I trial of adoptively transferred tumor-infiltrating lymphocyte immunotherapy following concurrent chemoradiotherapy in patients with locoregionally advanced nasopharyngeal carcinoma[J]. OncoImmunology, 2015, 4(2):e976507. DOI:10.4161/23723556.2014.976507. [12] Lanier LL. Up on the tightrope:natural killer cell activation and inhibition[J]. Nat Immunol, 2008, 9(5):495-502. DOI:10.1038/ni1581. [13] 王湛,周玲,吴小兵,等. Ad-LMP2重组腺病毒疫苗在恒河猴体内免疫效果的研究[J]. 中华实验和临床病毒学杂志, 2006, 20(1):63-65. Wang Z, Zhou L, Wu XB. Immune responses in rhesus induced by recombinant adenovirus Ad-LMP2[J]. Chin J Exp Clin Virol, 2006, 20(1):63-65. [14] Chia WK, Wang WW, Teo M, et al. A phase Ⅱ study evaluating the safety and efficacy of an adenovirus-DeltaLMP1-LMP2 transduced dendritic cell vaccine in patients with advanced metastatic nasopharyngeal carcinoma[J]. Ann Oncol, 2012, 23(4):997-1005. DOI:10.1093/annonc/mdr341. [15] Fan Y, Zhang C, Jin S, et al. Progress of immune checkpoint therapy in the clinic (review)[J]. Oncol Rep, 2019, 41(1):3-14. DOI:10.3892/or.2018.6819. [16] Fang W, Zhang J, Hong S, et al. EBV-driven LMP1 and IFN-gamma up-regulate PD-L1 in nasopharyngeal carcinoma:implications for oncotargeted therapy[J]. Oncotarget, 2014, 5(23):12189-12202. DOI:10.18632/oncotarget.2608. [17] Zhang J, Fang W, Qin T, et al. Co-expression of PD-1 and PD-L1 predicts poor outcome in nasopharyngeal carcinoma[J]. Med Oncol, 2015, 32(3):86. DOI:10.1007/s12032-015-0501-6. [18] Hsu C, Lee SH, Ejadi S, et al. Safety and antitumor activity of pembrolizumab in patients with programmed death-ligand 1-positive nasopharyngeal carcinoma:results of the KEYNOTE-028 study[J]. J Clin Oncol, 2017, 35(36):4050-4056. DOI:10.1200/jco.2017.73.3675. [19] Ma BBY, Lim WT, Goh BC, et al. Antitumor activity of nivolumab in recurrent and metastatic nasopharyngeal carcinoma:an international, multicenter study of the Mayo clinic phase 2 consortium (NCI-9742)[J]. J Clin Oncol, 2018, 36(14):1412-1418. DOI:10.1200/jco.2017.77.0388. [20] Fang W, Yang Y, Ma Y, et al. Camrelizumab (SHR-1210) alone or in combination with gemcitabine plus cisplatin for nasopharyngeal carcinoma:results from two single-arm, phase 1 trials[J]. Lancet Oncol, 2018, 19(10):1338-1350. DOI:10.1016/S1470-2045(18)30495-9. [21] Wang FH, Wei XL, Feng JF, et al. Recombinant humanized anti-PD-1 monoclonal antibody toripalimab (JS001) in patients with refractory/metastatic nasopharyngeal carcinoma:interim results of a phase Ⅱ clinical study POLARIS-02[J]. ASCO, 2019, abs6017. [22] Galluzzi L, Buque A, Kepp O, et al. Immunological effects of conventional chemotherapy and targeted anticancer agents[J]. Cancer Cell, 2015, 28(6):690-714. DOI:10.1016/j.ccell.2015.10.012. [23] Lynch TJ, Bondarenko I, Luft A, et al. Ipilimumab in combination with paclitaxel and carboplatin as first-line treatment in stage ⅢB/IV non-small-cell lung cancer:results from a randomized, double-blind, multicenter phase Ⅱ study[J]. J Clin Oncol, 2012, 30(17):2046-2054. DOI:10.1200/JCO.2011.38.4032. [24] Comoli P, Pedrazzoli P, Maccario R, et al. Cell therapy of stage ⅠV nasopharyngeal carcinoma with autologous Epstein-Barr virus-targeted cytotoxic T lymphocytes[J]. J Clin Oncol, 2005, 23(35):8942-8949. DOI:10.1200/JCO.2005.02.6195. [25] Louis CU, Straathof K, Bollard CM, et al. Adoptive transfer of EBV-specific T cells results in sustained clinical responses in patients with locoregional nasopharyngeal carcinoma[J]. J Immunother, 2010, 33(9):983-990. DOI:10.1097/CJI.0b013e3181f3cbf4. [26] Secondino S, Zecca M, Licitra L, et al. T-cell therapy for EBV-associated nasopharyngeal carcinoma:preparative lymphodepleting chemotherapy does not improve clinical results[J]. Ann Oncol, 2012, 23(2):435-441. DOI:10.1093/annonc/mdr134. [27] Chia WK, Teo M, Wang WW, et al. Adoptive T-cell transfer and chemotherapy in the first-line treatment of metastatic and/or locally recurrent nasopharyngeal carcinoma[J]. Mol Ther, 2014, 22(2):132-139. DOI:10.1038/mt.2013.242. [28] Smith C, Lee V, Schuessler A, et al. Pre-emptive and therapeutic adoptive immunotherapy for nasopharyngeal carcinoma:Phenotype and effector function of T cells impact on clinical response[J]. Oncoimmunology, 2017, 6(2):e1273311. DOI:10.1080/2162402x.2016.1273311. [29] Huang J, Fogg M, Wirth LJ, et al. Epstein-Barr virus-specific adoptive immunotherapy for recurrent, metastatic nasopharyngeal carcinoma[J]. Cancer, 2017, 123(14):2642-2650. DOI:10.1002/cncr.30541. [30] Lv JW, Li JY, Luo LN, et al. Comparative safety and efficacy of anti-PD-1 monotherapy, chemotherapy alone, and their combination therapy in advanced nasopharyngeal carcinoma:findings from recent advances in landmark trials[J]. J Immunother Cancer, 2019, 7(1):159. DOI:10.1186/s40425-019-0636-7. [31] Yeo ELL, Li YQ, Soo KC, et al. Combinatorial strategies of radiotherapy and immunotherapy in nasopharyngeal carcinoma[J]. Chin Clin Oncol, 2018, 7(1):15. DOI:10.21037/cco.2018.04.05. [32] Sharma P, Hu-Lieskovan S, Wargo JA, et al. Primary, adaptive, and acquired resistance to cancer immunotherapy[J]. Cell, 2017, 168(4):707-723. DOI:10.1016/j.cell.2017.01.017. [33] Khailaie S, Rowshanravan B, Robert PA, et al. Characterization of CTLA4 trafficking and implications for its function[J]. Biophys J, 2018, 115(7):1330-1343. DOI:10.1016/j.bpj.2018.08.020. [34] Kawakami Y, Ohta S, Sayem MA, et al. Immune-resistant mechanisms in cancer immunotherapy[J]. Int J Clin Oncol, 2020, 25(5):810-817. DOI:10.1007/s10147-019-01611-x. [35] Larkin J, Chiarion-Sileni V, Gonzalez R, et al. Combined nivolumab and ipilimumab or monotherapy in untreated melanoma[J]. N Engl J Med, 2015, 373(1):23-34. DOI:10.1056/NEJMoa1504030. [36] Homet-Moreno B, Mok S, Comin-Anduix B, et al. Combined treatment with dabrafenib and trametinib with immune-stimulating antibodies for BRAF mutant melanoma[J]. Oncoimmunology, 2016, 5(7):e1052212. DOI:10.1080/2162402X.2015.1052212. [37] Gubin MM, Zhang X, Schuster H, et al. Checkpoint blockade cancer immunotherapy targets tumour-specific mutant antigens[J]. Nature, 2014, 515(7528):577-581. DOI:10.1038/nature13988. [38] Zhao L, Liao X, Hong G, et al. Mismatch repair status and high expression of PD-L1 in nasopharyngeal carcinoma[J]. Cancer Manag Res, 2019, 19(11):1631-1640. DOI:10.2147/CMAR. S193878. [39] Cohen EEW, Bell RB, Bifulco CB, et al. The society for immunotherapy of cancer consensus statement on immunotherapy for the treatment of squamous cell carcinoma of the head and neck (HNSCC)[J]. J Immunother Cancer, 2019, 7(1):184. DOI:10.1186/s40425-019-0662-5. [40] Postow MA, Sidlow R, Hellmann MD. Immune-related adverse events associated with immune checkpoint blockade[J]. N Engl J Med, 2018, 378(2):158-168. DOI:10.1056/NEJMra1703481. [41] Thompson JA, Schneider BJ, Brahmer J, et al. Management of immunotherapy-related toxicities, version 1.2019[J]. J Natl Compr Canc Netw, 2019, 17(3):255-289. DOI:10.6004/jnccn.2019.0013.