Abstract:Objective To monitor and evaluate in vivo dose changes of intensity-modulated radiotherapy (IMRT) in patients with cervical cancer in a real-time manner. Methods Twelve patients with cervical cancer admitted to our hospital were enrolled in this study. The in vivo doses were monitored by PerFRACTIONTM. Electronic portal imaging device (EPID) were collected in each treatment fraction for two-dimensional in vivo dose verification[γ index and dose difference (DD) index]. Log files were recorded for three-dimensional in vivo dose verification (γ index). The correlation between in vivo dose and treatment duration was analyzed by Pearson correlation analysis. Results A total of 206 sets of EPID images and corresponding Log files were collected. The three-dimensional in vivo dose verification γ1%/1mm of all patients was not correlated with treatment fraction (P>0.05). Among them, the absolute difference of γ1%/1mm of 94.66% fractions was< 1%. The mean DD3% of two-dimensional in vivo dose verification of all patients was negatively correlated with treatment fraction (P<0.05). Among which, the average γ3%/3mm of 9 patients was>89% in the treatment fractions, and the average γ3%/3mm of 98.57% fractions of these 9 patients was>93%. The other 3 patients had an average γ3%/3mm ranged from 38% to 100%. CBCT images showed that the bladder volume of these 3 patients was significantly decreased with the relative changes by 82.08%, 84.41% and 73.59%, respectively, and the target area was retracted significantly with the relative changes by 38.12%, 59.79% and 24.46%, respectively. Conclusion Combined with γ index and DD index, PerFRACTIONTM can monitor the mechanical stability of accelerator and MU delivery accuracy during treatment fractions, and monitor the changes of in vivo dose in patients with cervical cancer, which can improve the safety and quality assurance of IMRT for cervical cancer patients and provide guidance for patients with adaptive radiotherapy.
Tan Xia,Luo Huanli,Wang Ying et al. Preliminary study of in vivo dose measurement of intensity-modulated radiotherapy for cervical cancer[J]. Chinese Journal of Radiation Oncology, 2020, 29(9): 784-789.
[1] 王骁踊. 三维在体剂量监测系统的物理模型及临床运用的初步研究[D]. 北京:清华大学,2015. Wang XY. The physical model validation and clinical application study of the 3D in vivo dose monitor system[D]. Beijing:Tsinghua University, 2015. [2] 黄妙云. 基于EPID建立调强三维剂量验证物理模型及临床应用研究[D]. 北京:清华大学,2015. Huang MY. Application of intensity-modulated 3D dose verification physical model based on EPID[D]. Beijing:Tsinghua University, 2015. [3] Wang XY, Chen LX, Xie CH, et al. Experimental verification of a 3D in vivo dose monitoring system based on EPID[J]. Oncotarget,2017,8(65):109619-109631. DOI:10.18632/oncotarget.22758. [4] Emmelyn S, Hsieh BS, Katherine S. et al. Can a commercially available EPID dosimetry system detect small daily patient setup errors for cranial IMRT/SRS?[J]. Pract Radiat Oncol, 2017, 7(4):e283-e290. DOI:10.1016/j.prro.2016.12.005. [5] Zhuang AH, Olch AJ. Sensitivity study of an automated system for daily patient QA using EPID exit dose images[J]. J Appl Clin Med Phys, 2018, 19(3):114-124. DOI:10.1002/acm2.12303. [6] Aziz A, Figueredo J, Jones GW, et al. Validation of three-Dimensional electronic portal imaging device-ased PerFRACTIONTMsoftware for patient-specific quality assurance[J]. J Med Phys, 2019, 44(1):16-20. DOI:10.4103/jmp. JMP_76_18. [7] Ahmed S, Kapatoes J, Zhang G, et al. A hybrid volumetric dose verification method for single-isocenter multiple-target cranial SRS[J]. J Appl Clin Med Phys, 2018,19(5):651-658. DOI:10.1002/acm2.12430. [8] Mans A, Wendling M, McDermott LN, et al. Catching errors with in vivo EPID dosimetry[J]. Med Phys, 2010, 37(6):2638-2644. DOI:10.1118/1.3397807. [9] Agnew A, Agnew CE, Grattan MWD, et al. Monitoring daily MLC positional errors using trajectory log files and EPID measurements for IMRT and VMAT deliveries[J]. Phys Med Biol,2014,59(9):N49-N63. DOI:10.1088/0031-9155/59/9/N49. [10] Laursen LV, Elstrøm UV, Vestergaard A, et al. Residual rotational set-up errors after daily cone-beam CT image guided radiotherapy of locally advanced cervical cancer[J]. Radiother Oncol, 2012, 105(2):220-225. DOI:10.1016/j.radonc.2012.08.012. [11] Neelam T, John HL, Catheryn MY, et al. Daily online cone beam computed tomography to assess interfractional motion in patients with intact cervical cancer[J]. Int J Radiat Oncol Biol Phys, 2010, 80(1):273-280. DOI:10.1016/j.ijrobp.2010.06.003. [12] Almond PR, Biggs PJ, Couesey BM, et al. AAPM′s TG51 protocol for clinical reference dosimetry of high-energy photon and electron beams[J]. Med Phys, 1999, 26(9):1847-1870. DOI:10.1118/1.598691. [13] Eric EK, Joseph H, Fang-Fang Y, et al. Task Group 142 report:Quality assurance of medical accelerators[J]. Med Phys, 2009:36(9):4197-4212. DOI:10.1118/1.3190392. [14] Luo HL, Jin F, Yang DY, et al. Interfractional variation in bladder volume and its impact on cervical cancer radiotherapy: Clinical significance of portable bladder scanner [J]. Med Phys, 2016, 43(7): 4412-4419. Doi: 10.1118/1.4954206. [15] Chan P, Dinniwell R, Haider MA, et al. Inter-and intrafractional tumor and organ movement in patients with cervical cancer undergoing radiotherapy:a cinematic-MRI point-of-interest study[J]. Int J Radiat Oncol Biol Phys, 2008,70(5):1507-1515. DOI:10.1016/j.ijrobp.2007.08.055. [16] Chang Y, Yang ZY, Li GL, et al. Correlations between radiation dose in bone marrow and hematological toxicity in patients with cervical cancer:a comparison of 3DCRT, IMRT, and RapidARC[J]. Int J Gynecol Cancer, 2016, 26(4):770-776. DOI:10.1097/IGC.0000000000000660. [17] Tanderup K, Georg D, Potter R, et al. Adaptive management of cervical cancer radiotherapy[J]. Semin Radiat Oncol, 2010,20(2):121-129. DOI:0.1016/j.semradonc.2009.11.006. [18] Kerkhof EM, Raaymakers BW, Van Der Heide UA, et al. Online MRI guidance for healthy tissue sparing in patients with cervical cancer:an IMRT planning study[J]. Radiother Oncol,2008,88(2):241-249. DOI:10.1016/j.radonc.2008.04.009. [19] Jadon R, Pembroke CA, Hanna CL, et al. A systematic review of organ motion and image-guided strategies in external beam radiotherapy for cervical cancer [J]. Clin Oncol, 2014, 26(4):185-196. DOI: 10.1016/j.clon.2013.11.031. [20] 姜斐, 于浪, 孙显松, 等. 图像引导放射治疗在653例宫颈癌摆位误差的分析[J]. 中国医学装备, 2017,14(1):21-24. DOI:10.3969/J. ISSN.1672-8270.2017.01.007. Jiang F, Yu L, Sun XS, et al. Analysis of the setup error in 653 cervix cancer patients treated with image-guided radiotherapy[J]. China Med Equip, 2017, 14(1):21-24. DOI:10.3969/J. ISSN.1672-8270.2017.01.007. [21] Heijkoop ST, Nout RA, Quint S, et al. Dynamics of patient reported quality of life and sympotoms in the acute phase of online adaptive external beam radiation therapy for locally advanced cervical cancer[J]. Gynecol Oncol, 2017, 147(2):439-449. DOI:10.1016/j.ygyno.2017.08.009. [22] 莫玉珍, 龙雨松, 付江萍, 等. 宫颈癌IMRT过程中调整放疗计划对靶区和正常危及器官受照剂量的影响[J]. 山东医药, 2013, 53(6):48-49. DOI:10.3969/j.issn.1002-266X.2013.06.015. Mo YZ, Long YS, Fu JP, et al. Effect of adjusted radiotherapy plan on radiation dose of target volume and OARs during cervical cancer IMRT[J]. Shandong Med J, 2013, 53(6):48-49. DOI:10.3969/j.issn.1002-266X.2013.06.015. [23] Stewart J, Lim K, Kelly V, et al. Automated weekly replanning for intensity-modulated radiotherapy of cervix cancer[J]. Int J Radiat Oncol Biol Phys, 2011, 78(2):350-358. DOI:10.1016/j.ijrobp.2009.07.1699.