[an error occurred while processing this directive]|[an error occurred while processing this directive]
影像组学在头颈部肿瘤放疗的研究进展
刘晓斌1, 沈文2
1天津医科大学一中心临床学院300192 ; 2天津市第一中心医院放射科300192
Research progress on application of radiomics in radiotherapy of head and neck cancer
Liu Xiaobin1, Shen Wen2
1First Central Clinical College, Tianjin Medical University, Tianjin 300192,China; 2Department of Radiology, Tianjin First Central Hospital,Tianjin 300192,China
Abstract:Head and neck cancer presents with complex anatomy and high intratumoralheterogeneity. Radiotherapy is one of the main treatments. The therapeutic strategy and prognostic evaluation in head and neck cancer patients traditionally depend on TNM stage, lacking of individual information. Radiomics can extracts high-throughput image features relevant to the biology of tumors, which provides a non-invasive and quantitative method to evaluate the overall tumor heterogeneity and also offers a novel perspective for precision radiotherapy. The research progresses on the application and chanllenges of radiomics in the radiotherapy for head and neck cancer were summarized in this review.
Liu Xiaobin,Shen Wen. Research progress on application of radiomics in radiotherapy of head and neck cancer[J]. Chinese Journal of Radiation Oncology, 2021, 30(1): 98-101.
[1] Fitzmaurice C, Allen C, Barber RM, et al. Global, regional, and national cancer incidence, mortality, years of life lost, years lived with disability, and disability-adjusted life-years for 32 cancer groups, 1990 to 2015:a systematic analysis for the global burden of disease study[J]. JAMA Oncol, 2017, 3:524-548. DOI:10.1001/jamaoncol.2016.5688. [2] Lang JY, Gao L, Guo Y, et al. Comprehensive treatment of squamous cell cancer of head and neck:Chinese expert consensus 2013[J]. Future Oncol, 2014, 10(9):1635-1648. DOI:10.2217/fon.14.44. [3] Forastiere AA, Goepfert H, Maor M, et al. Concurrent chemotherapy and radiotherapy for organ preservation in advanced laryngeal cancer[J].N Engl J Med, 2003, 349:2091-2098. DOI:10.1056/NEJMoa031317.2003,349:2091-2098. [4] Burrell RA, McGranahan N, Bartek J, et al.The causes and consequences of genetic heterogeneity in cancer evolution[J]. Nature, 2013, 501(7467):338-345. DOI:10.1038/nature12625. [5] Ren J, Tian J, Yuan Y, et al. Magnetic resonance imaging based radiomics signature for the preoperative discrimination of stage Ⅰ-Ⅱ and Ⅲ-IV head and neck squamous cell carcinoma[J]. Eur J Radiol, 2018, 106:1-6. DOI:10.1016/j.ejrad.2018.07.002. [6] Seidler M, Forghani B, Reinhold C, et al. Dual-energy CT texture analysis with machine learning for the evaluation and characterization of cervical lymphadenopathy[J]. Comput Struct Biotechnol J, 2019, 17:1009-1015. DOI:10.1016/j.csbj.2019.07.004. [7] Chen L, Zhou Z, Sher D, et al. Combining many-objective radiomics and 3D convolutional neural network through evidential reasoning to predict lymph node metastasis in head and neck cancer[J]. Phys Med Biol, 2019, 64(7):075011. DOI:10.1088/1361-6560/ab083a. [8] Fakhry C, Westra WH, Li S, et al. Improved survival of patients with human papilloma virus-positive head and neck squarnous cell carcinoma in a prospective clinical tria1[J].J Natl Cancer Inst, 2008, 100:261-269. DOI:10.1093/jnci/djn011. [9] Yu K, Zhang Y, Yu Y, et al. Radiomic analysis in prediction of human papilloma virus status[J]. Clin Transl Radiat Oncol, 2017, 7:49-54. DOI:10.1016/j.ctro.2017.10.001. [10] Skiruler HD,Sandulache VC,OW TJ,et al. Tp53 disruptive mutations lead to head and neck cancer treatment failure through inhibition of radiation-induced senescence[J]. Clin Canc Res, 2012,18(1):290-300. DOI:10.1158/1078-0432. CCR-11-2260. [11] Dang M, Lysack JT, Wu T, et al. MRI texture analysis predicts p53 status in head and neck squamous cell carcinoma[J]. Am J Neuroradiol, 2015, 36:166-170. DOI:10.3174/ajnr. A4110. [12] Crispin-Ortuzar M, Apte A, Grkovski M, et al. Predicting hypoxia status using a combination of contrast-enhanced computed tomography and 18F-Fluorodeoxyglucose positron emission tomography radiomics features[J]. Radiother Oncol, 2018, 127(1):36-42. DOI:10.1016/j.radonc.2017.11.025. [13] Li S, Wang K, Hou Z, et al. Use of radiomics combined with machine learning method in the recurrence patterns after intensity-modulated radiotherapy for nasopharyngeal carcinoma:a preliminary study[J]. Front Oncol, 2018, 8:648. DOI:10.3389/fonc.2018.00648. [14] Zhao L, Gong J, Xi Y, et al. MRI-based radiomics nomogram may predict the response to induction chemotherapy and survival in locally advanced nasopharyngeal carcinoma[J]. Eur Radiol, 2020, 30(1):537-546. DOI:10.1007/s00330-019-06211-x. [15] Peng H, Dong D, Fang MJ, et al. Prognostic value of deep learning PRT-CT-based radiomics:potential role for future individual induction chemotherapy in advanced nasopharyngeal carcinoma[J]. Clin Cancer Res, 2019, 25(14):4271-4279. DOI:10.1158/1078-0432. CCR-18-3065. [16] Noij DP, Pouwels PJW, Ljumanovic R, et al. Predictive value of diffusion-weighted imaging without and with including contrast-enhanced magnetic resonance imaging in image analysis of head and neck squamous cell carcinoma[J]. Eur J Radiol, 2015, 84:108-116. DOI:10.1016/j.ejrad.2014.10.015. [17] Hentschel M, Appold S, Schreiber A, et al. Early FDG PET at 10 or 20 Gy under chemoradiotherapy is prognostic for locoregional control and overall survival in patients with head and neck cancer[J]. Eur J Nucl Med Mol Imag, 2011, 38:1203-1211. DOI:10.1007/s00259-011-1759-3. [18] Trotti A. Toxicity in head and neck cancer:a review of trends and issues[J]. Int J Radiat Oncol Biol Phys, 2000,47:1-12. DOI:10.1016/s0360-3016(99)00558-1. [19] Marks LB, Yorke ED, Jackson A, et al. Use of normal tissue complication probability models in the clinic[J]. Int J Radiat Oncol, 2010, 76(3 Suppl):S10-19. DOI:10.1016/j.ijrobp.2009.07.1754. [20] Sheikh K, Lee SH, Cheng Z, et al. Predicting acute radiation induced xerostomia in head and neck cancer using MR and CT radiomics of parotid and submandibular glands[J]. Radiat Oncol, 2019, 14(1):131. DOI:10.1186/s13014-019-1339-4. [21] van Dijk LV, Langendijk JA, Zhai TT, et al. Delta-radiomics features during radiotherapy improve the prediction of late xerostomia[J]. Sci Rep, 2019, 9(1):12483. DOI:10.1038/ s41598-019-48184-3. [22] van Dijk LV, Thor M, Steenbakkers RJHM, et al. Parotid gland fat related Magnetic Resonance image biomarkers improve prediction of late radiation-induced xerostomia[J]. Radiother Oncol, 2018, 128(3):459-466. DOI:10.1016/j.radonc.2018.06.012. [23] van Dijk LV, Noordzij W, Brouwer CL, et al. 18F-FDG PET image biomarkers improve prediction of late radiation-induced xerostomia[J]. Radiother Oncol, 2018, 126(1):89-95. DOI:10.1016/j.radonc.2017.08.024. [24] Thor M, Tyagi N, Hatzoglou V, et al. A magnetic resonance imaging-based approach to quantify radiation-induced normal tissue injuries applied to trismus in head and neck cancer[J]. Phys Imaging Radiat Oncol, 2017, 1:34-40. DOI:10.1016/j.phro.2017.02.006. [25] Abdollahi H, Mostafaei S, Cheraghi S, et al. Cochlea CT radiomics predicts chemoradiotherapy induced sensorineural hearing loss in head and neck cancer patients:A machine learning and multi-variable modelling study[J]. Phys Med, 2018, 45:192-197. DOI:10.1016/j.ejmp.2017.10.008. [26] Cozzi L, Franzese C, Fogliata A, et al. Predicting survival and local control after radiochemotherapy in locally advanced head and neck cancer by means of computed tomography based radiomics[J]. Strahlenther Onkol, 2019, 195(9):805-818. DOI:10.1007/ s00066-019-01483-0. [27] Zhuo EH, Zhang WJ, Li HJ, et al. Radiomics on multi-modalities MR sequences can subtype patients with non-metastatic nasopharyngeal carcinoma (NPC) into distinct survival subgroups[J]. Eur Radiol, 2019, 29(10):5590-5599. DOI:10.1007/s00330-019-06075-1. [28] Bogowicz M, Riesterer O, Stark LS,et al. Comparison of PET and CT radiomics for prediction of local tumor control in head and neck squamous cell carcinoma[J]. Acta Oncol, 2017, 56(11):1531-1536. DOI:10.1080/ 0284186X. 2017.1346382. [29] Fave X, Mackin D, Yang J, et al. Can radiomics features be reproducibly measured from CBCT images for patients with non-small cell lung cancer[J]. Med Phys, 2015, 42(12):6784-6797. DOI:10.1118/1.4934826. [30] Gu J, Zhu J, Qiu Q, et al. The feasibility study of megavoltage computed tomographic (MVCT) image for texture feature analysis[J]. Front Oncol, 2018, 12(8):586. DOI:10.3389/fonc.2018.00586. [31] Larue RT, Defraene G, De Ruysscher D, et al. Quantitative radiomics studies for tissue characterization:a review of technology and methodological procedures[J]. Br J Radiol, 2017,90(1070):20160665. DOI:10.1259/ bjr.20160665. [32] Men K, Chen XY, Zhang Y, et al. Deep deconvolutional neural network for target segmentation of nasopharyngeal cancer in planning computed tomography images[J]. Front Oncol, 2017, 7:315. DOI:10.3389/fonc.2017.00315. [33] Zhu W, Huang Y, Zeng L, et al. Anatomy net:deep learning for fast and fully automated whole-volume segmentation of head and neck anatomy[J].Med Phys, 2019, 46(2):576-589. DOI:10.1002/mp.13300. [34] 仇清涛,段敬豪,巩贯忠,等. 影像组学可重复性问题研究进展[J]. 中华放射肿瘤学杂志, 2018, 27(3):327-330. DOI:10.3760/cma.j.issn.1004-4221.2018.03.020. Qiu QT, Duan JH, Gong GZ, et al. Research progress on radiomics reproducibility[J]. Chin J Radiat Oncol,2018, 27(3):327-330. DOI:10.3760/cma.j.issn.1004-4221.2018.03.020. [35] 吴亚平,林予松,顾建钦,等. 影像组学研究进展与挑战[J].中华放射学杂志, 2017, 51(12):983-985. DOI:10.3760/cma.j.issn.1005-1201.2017.12.021. Wu YP, Lin YS, Gu JQ, et al. A survey on radiomics:proceedings and challenges[J].中华放射学杂志,2017, 51(12):983-985. DOI:10.3760/cma.j.issn.1005-1201.2017.12.021. [36] Parmar C, Grossmann P, Bussink J, et al. Machine learning methods for quantitative radiomic biomarkers[J]. Sci Rep, 2015, 5:13087. DOI:10.1038/srep13087.