[an error occurred while processing this directive]|[an error occurred while processing this directive]
肿瘤MRI引导质子治疗技术进展
商海焦1, 蒲越虎1, 王雪桃2
1中国科学院上海应用物理研究所,上海 201800; 2四川大学华西医院,成都 610041
Research progress on magnetic resonance imaging-guided proton therapy for tumors
Shang Haijiao1, Pu Yuehu1, Wang Xuetao2
1Sanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China; 2West China Hospital of Sichuan University, Chengdu 610041, China
Abstract:With the application of magnetic resonance imaging (MRI)-guided photon therapy, the concept of combining real-time MRI guidance with proton therapy, namely, MRI-guided proton therapy (MRPT), has attracted widespread attention. It is expected that MRPT canmitigate the uncertaintiesduring the treatment of proton therapy to make full use of the physical advantages of protons. However, multiple electromagnetic interactions between proton therapy and MRI-guided systems may lead to mutual interference between the two systems. This article review the research progress on the MRPT system, aiming to provide certain reference for the design of MRPT system.
Shang Haijiao,Pu Yuehu,Wang Xuetao. Research progress on magnetic resonance imaging-guided proton therapy for tumors[J]. Chinese Journal of Radiation Oncology, 2020, 29(6): 491-493.
[1] Moteabbed M, Schuemann J, Paganetti H. Dosimetric feasibility of real-time MRI-guided proton therapy[J]. Med Phys, 2014, 41(11):111713. DOI:10.1118/1.4897570. [2] Schellhammer SM, Gantz S, LÜhr A, et al. Technical note:experimental verification of magnetic field induced beam deflection and Bragg peak displacement for MR-integrated proton therapy[J]. Med Phys, 2018, 45(7):3429-3434. DOI:10.1002/mp.12961. [3] Meijsing I, Raaymakers BW, Raaijmakers AJE, et al. Dosimetry for the MRI accelerator:the impact of a magnetic field on the response of a Farmer NE2571 ionization chamber[J]. Phys Med Biol, 2009, 54(10):2993-3002. DOI:10.1088/0031-9155/54/10/002. [4] Smit K, van Asselen B, Kok JGM, et al. Towards reference dosimetry for the MR-linac:magnetic field correction of the ionization chamber reading[J]. Phys Med Biol,2013, 58(17):5945-5957. DOI:10.1088/0031-9155/58/17/5945. [5] Reynolds M, Fallone BG, Rathee S. Dose response of selected ion chambers in applied homogeneous transverse and longitudinal magnetic fields[J]. Med Phys, 2013, 40(4):42102. DOI:10.1118/1.4794496. [6] Andreo P, Burns DT, Kapsch RP, et al. Determination of consensus k_Q values for megavoltage photon beams for the update of IAEA TRS-398[J]. Phys Med Biol, 2020,(published online Mar 17). DOI:10.1088/1361-6560/ab807b. [7] O′Brien DJ, Roberts DA, Ibbott GS, et al. Reference dosimetry in magnetic fields:formalism and ionization chamber correction factors[J]. Med Phys, 2016, 43(8):4915-4927. DOI:10.1118/1.4959785. [8] Spindeldreier CK, Schrenk O, Bakenecker A, et al. Radiation dosimetry in magnetic fields with Farmer-type ionization chambers:determination of magnetic field correction factors for different magnetic field strengths and field orientations[J]. Phys Med Biol, 2017, 62(16):6708-6728. DOI:10.1088/1361-6560/aa7ae4. [9] Padilla-Cabal F, Kuess P, Georg D, et al. Characterization of EBT3 radiochromic films for dosimetry of proton beams in the presence of magnetic fields[J]. Med Phys, 2019, 46(7):3278-3284. DOI:10.1002/mp.13567. [10] Causer TJ, Schellhammer SM, Gantz S, et al. First application of a high-resolution silicon detector for proton beam Bragg peak detection in a 0.95 T magnetic field[J]. Med Phys, 2020, 47(1):181-189. DOI:10.1002/mp.13871. [11] Liney GP, Whelan B, Oborn B. MRI-linear accelerator radiotherapy systems[J]. Clin Oncol, 2018, 30(11):686-691. DOI:10.1016/j.clon.2018.08.003. [12] Jonsson JH, Karlsson MG, Karlsson M, et al. Treatment planning using MRI data:an analysis of the dose calculation accuracy for different treatment regions[J]. Radiat Oncol, 2010, 5(1):62. DOI:10.1186/1748-717X-5-62. [13] Kapanen M, Tenhunen M. T1/T2-weighted MRI provides clinically relevant pseudo-CT density data for the pelvic bones in MRI-only based radiotherapy treatment planning[J]. Acta Oncol, 2013, 52(3):612-618. DOI:10.3109/0284186X.2012.692883. [14] Tyagi N, Fontenla S, Zhang J, et al. Dosimetric and workflow evaluation of first commercial synthetic CT software for clinical use in pelvis[J]. Phys Med Biol, 2017, 62(8):2961-2975. DOI:10.1088/1361-6560/aa5452. [15] Maspero M, van den Berg CAT, Landry G, et al. Feasibility of MR-only proton dose calculations for prostate cancer radiotherapy using a commercial pseudo-CT generation method[J]. Phys Med Biol, 2017, 62(24):9159-9176. DOI:10.1088/1361-6560/aa9677. [16] Schellhammer SM, Hoffmann AL, Gantz S. et al. Integrating a low-field open MR scanner with a static proton research beam line:proof of concept[J]. Phys Med Biol, 2018, 63(23):23LT01. DOI:10.1088/1361-6560/aaece8.