情报科学 ›› 2025, Vol. 43 ›› Issue (8): 109-116.

• 业务研究 • 上一篇    下一篇

基于ChatGLM大语言模型的革命战争知识图谱构建 及其应用研究 ——以孟良崮战役为例

  

  • 出版日期:2025-08-05 发布日期:2025-12-12

  • Online:2025-08-05 Published:2025-12-12

摘要: 【目的/意义】为了组织与挖掘近现代革命战争领域的信息与知识,构建面向革命战争事件的知识图谱,探 索革命战争知识图谱在公共图书馆资源建设与服务中的创新应用。【方法/过程】研究以孟良崮战役为例,基于Chat⁃ GLM-6B模型开展实体关系抽取,构建革命战争知识图谱,并探讨其在公共图书馆服务中的创新应用路径。【结果/ 结论】提出了一种以事件为核心的革命战争知识图谱构建方法,实现了红色文化资源的智能组织与关联挖掘。探 讨了革命战争知识图谱在公共图书馆资源数字化与集成、智能检索与导航等资源组织与建设、红色文化教育、文旅 融合服务、红色研学中具体应用价值与路径。【创新/局限】基于大语言模型的知识抽取方法在小样本环境下表现出 良好效果,提出了以事件为核心的革命战争知识图谱构建方法,但对计算资源的需求较高,且仅使用单一大语言模 型,缺乏多模型对比分析。

Abstract: 【Purpose/significance】To organize and mine information and knowledge in the field of modern revolutionary wars, this study aims to construct an event-centric knowledge graph for revolutionary war events and explore its innovative applications in public library resource development and services.【Method/process】Taking the Menglianggu Campaign as a case study, entity and relation⁃ ship extraction was conducted using the ChatGLM-6B model to build a revolutionary wars knowledge graph. The research further in⁃ vestigated innovative application pathways for this knowledge graph in public library services.【Result/conclusion】The study proposes an event-centric methodology for constructing revolutionary wars knowledge graphs, achieving intelligent organization and associative mining of red culture resources. It explores the application value and pathways of the knowledge graph in public libraries, including: resource digitization and integration, intelligent retrieval and navigation for resource organization, red culture education, culturaltourism integration services, and red-themed research activities.【Innovation/limitation】The knowledge extraction method based on large language models demonstrates promising performance in low-resource settings. While the proposed event-centric methodology advances knowledge graph construction, it requires significant computational resources and relies solely on a single large language model, lacking comparative analysis with alternative models.