情报科学 ›› 2025, Vol. 43 ›› Issue (5): 22-32.

• 专题 • 上一篇    下一篇

基于层次因子图的电商用户信息认知结构挖掘研究

  

  • 出版日期:2025-05-05 发布日期:2025-09-01

  • Online:2025-05-05 Published:2025-09-01

摘要: 【目的/意义】挖掘电商用户对信息组织和理解的认知过程,为企业深入了解用户的信息处理和决策过程, 优化商品信息呈现方式和服务,提升用户体验和营销效果提供依据。【方法/过程】基于层次因子图构建电商用户信 息认知结构模型,根据电商用户在商品页面浏览的信息外显处理行为数据,采用变分推理算法推导用户先验知识 和新知识加工的消息传递路径和关系,挖掘用户信息认知结构。【结果/结论】实验结果表明,基于层次因子图的认 知结构挖掘方法能够有效识别中国、菲律宾、马来西亚等国电商用户信息认知结构。通过对比不同国家用户的信 息认知结构,发现不同文化背景下的用户在信息处理和决策制定等方面存在一定的差异。【创新/局限】研究揭示了 用户信息认知结构的构建过程,未来将深入探索用户认知结构模型与情境感知模型的融合,将情境信息作为输入 参数引入到用户认知结构的分析过程中更准确地理解和预测用户在不同情境下的认知结构和行为模式。

Abstract: 【Purpose/significance】Mining the cognitive process of e-commerce users' information organization and understanding, provid‑ ing the basis for enterprises to deeply understand users' information processing and decision-making process, optimize the way of com‑ modity information presentation and service, and enhance user experience and marketing effect【. Method/process】Based on the hierarchi‑ cal factor graph to construct the information cognitive structure model of e-commerce users, based on the behavioral data of e-commerce users' information episodic processing on the product page browsing, the variational reasoning algorithm is used to deduce the message transfer path and relationship between users' a priori knowledge and the processing of new knowledge, and to excavate the user's informa‑ tion cognitive structure【. Result/conclusion】The experimental results show that the cognitive structure mining method based on hierarchi‑ cal factor graph can effectively identify the information cognitive structure of e-commerce users from China, the Philippines and Malay‑ sia. By comparing the information cognitive structure of users in different countries, it is found that there are certain differences in infor‑ mation processing and decision making among users in different cultural backgrounds.【Innovation/limitation】The study reveals the con‑ struction process of user information cognitive structure, and in the future, we will deeply explore the integration of the user cognitive structure model with the context-awareness model, and introduce contextual information as an input parameter into the analysis of user cognitive structure to more accurately understand and predict the cognitive structure and behavioral patterns of users in different contexts.