情报科学 ›› 2025, Vol. 43 ›› Issue (7): 151-161.

• 业务研究 • 上一篇    下一篇

面向多方对话场景的多模态信息融合与情绪感知方法#br#

  

  • 出版日期:2025-07-05 发布日期:2025-10-16

  • Online:2025-07-05 Published:2025-10-16

摘要: 针对多元对话数据进行细粒度的情绪识别,追踪对话中情感的动态演变,助力舆情分析、用户 情感识别、图书馆智慧交互等领域的研究。【方法/过程】提出一种名为HIS-ERC的对话情绪识别模型,该模型嵌入 说话人信息,利用深度图卷积同时捕捉对话中全局-局部语境信息,同时设计三层次跨模态注意力机制捕捉不同模 态间的信息交互,实现多方对话中的准确识别。【结果/结论】实验结果表明,深层次、深交互的方法能够有效提高模 型的情绪感知性能。相比于经典的多模态对话情绪识别模型(MMGCN),HIS-ERC 在 IEMOCAP 和 MELD 两个 数据集上的准确率和F1值分别提升了3.51%、3.57%和2.15%、1.97%。【创新/局限】提出一种能够适用于多方对话场 景的多模态信息融合与情绪感知模型,为情报学领域的研究提供了新的方法支持。未来研究计划重点关注将技术 应用于实际场景,如图书馆智慧交互和网络舆情分析等领域。

Abstract: 【Purpose/significance】This study aims to conduct fine-grained emotion recognition on multi-source conversational data, track the dynamic evolution of emotions in conversations, and support research in areas such as public opinion analysis, user emotion recognition, and intelligent library interaction.【Method/process】We propose a dialogue emotion recognition model named HIS-ERC, which incorporates speaker information and leverages deep graph convolution to capture both global and local contextual information in conversations. Additionally, a three-level cross-modal attention mechanism is designed to capture information interactions between different modalities, enabling accurate recognition in multi-party dialogues.【Result/conclusion】Experimental results demonstrate that deep and highly interactive methods can effectively enhance the emotion perception performance of the model. Compared to the classical multimodal dialogue emotion recognition model (MMGCN), HIS-ERC improves accuracy and F1-score by 3.51% and 3.57% on the IEMOCAP dataset and by 2.15% and 1.97% on the MELD dataset, respectively.【Innovation/limitation】This study proposes a multimodal information fusion and emotion perception model applicable to multi-party dialogue scenarios, providing methodological support for research in the field of information science. Future research will focus on applying the technology to real-world scenarios, such as intelligent library interactions and online public opinion analysis.