情报科学 ›› 2025, Vol. 43 ›› Issue (6): 71-81.

• 理论研究 • 上一篇    下一篇

基于BERTopic的生成式人工智能主题图谱与演化分析

  

  • 出版日期:2025-06-05 发布日期:2025-10-16

  • Online:2025-06-05 Published:2025-10-16

摘要: 【目的/意义】自2022年底OpenAI发布ChatGPT以来,生成式人工智能在多个领域有了快速发展。厘清生 成式人工智能在学术界的研究主题结构及其演化趋势,以揭示该领域研究热点的动态变化规律与未来发展方向。 【方法/过程】运用BERTopic主题模型进行文本语义嵌入、UMAP降维与HDBSCAN密度聚类,并结合动态主题分 析,精准识别研究主题并绘制主题演化路径。【结果/结论】识别出智能教育技术、风险与技术治理、智能内容服务等 20个具体研究主题并绘制主题图谱,呈现出研究热点由技术探索逐步转向应用细化的演化趋势。其中,智能教育 领域长期处于研究热点中心,风险治理主题稳步升温。动态分析发现,主题演化存在明显的聚合与分化路径,体现 了跨学科融合与主题专业化的双重特征。【创新/局限】技术与方法的双重创新,提高了研究结果的可视性与解释 力。然而,研究数据来源的单一性可能导致某些研究主题未被充分覆盖。

Abstract: 【Purpose/significance】Since OpenAI released ChatGPT in late 2022, generative artificial intelligence has advanced rapidly in many fields. This study aims to clarify the structure and evolution of research themes in this academic area to reveal the dynamic patterns of key topics and future directions.【Method/process】Using the BERTopic model, we perform text semantic embedding, UMAP dimensionality reduction, and HDBSCAN density clustering. This approach, combined with dynamic topic analysis, accurately identifies research topics and maps their evolutionary paths.【Result/conclusion】Twenty specific research topics are identified and mapped, including intelligent education technology, risk and technology governance, and AI-powered content services. The results show that the research focus has gradually shifted from technological exploration to specific applications. Among these, intelligent edu⁃ cation has remained a core research area, while risk governance has gained increasing attention. Dynamic analysis reveal clear paths of integration and differentiation in topic evolution, reflecting both interdisciplinary integration and topic specialization.【Innovation/ limitation】The innovation in both technology and methodology improves the visibility and interpretability of the research results. How⁃ ever, the limited diversity of data sources may have led to incomplete coverage of certain research topics.