情报科学 ›› 2025, Vol. 43 ›› Issue (3): 85-90.

• 业务研究 • 上一篇    下一篇

语义双通道特征提取下图书馆多载体信息推荐研究

  

  • 出版日期:2025-03-05 发布日期:2025-05-27

  • Online:2025-03-05 Published:2025-05-27

摘要: 【目的/意义】图书馆信息载体多样,数据结构、元数据格式和存储方式存在差异且资源情景相似,传统以结 构化数据存储信息的图书馆管理系统,语义表达单一,仅关注内容特征,只能单通道提取语义特征,无法适应用户 搜索习惯,导致图书信息推荐匹配度低、用户满意度不高,所以需要新的推荐方法。【方法/过程】提出语义双通道 特征提取下的图书馆多载体信息推荐方法。一是采用语义双通道特征提取策略,提取图书馆多载体信息内容特征 和用户需求特征:将注意力机制引入卷积神经网络形成ATTCNN 模型,在卷积层捕捉局部特征后,利用注意力层 通过学习权重分布,选择性地关注输入数据中与信息推荐任务最相关的部分,提取信息内容特征。通过引入核函 数将数据映射到高维特征空间,进而在该空间中执行聚类操作,发现数据的内在结构和分布规律,以提取用户需求 特征。二是采用 Apriori算法获取两者的匹配关系,依据强关联性筛选出契合用户个性化需求的信息实现智能推 荐。【结果/结论】实验表明,用ATTCNN模型和核聚类算法分别提取特征时,F1始终高于0.9,推荐信息匹配度高 于92%,用户满意度高于89%,证明该方法可精准推荐信息,提高用户满意度。【创新/局限】创新点在于采用语义双 通道特征提取策略,结合多种算法实现精准推荐。

Abstract: 【Purpose/significance】In libraries, with diverse information carriers, differences in data structures, metadata formats and storage methods, and similar resource scenarios, traditional library management systems storing structured data have single semantic expressions. Focusing only on content features and extracting semantic features via a single channel, they can′t meet users′ search hab⁃ its, leading to low matching of book information recommendation and user satisfaction. Thus, a new recommendation method is needed. 【Method/process】A library multi-carrier information recommendation method via semantic dual-channel feature extraction is pro⁃ posed. Firstly, adopt the semantic dual-channel feature extraction strategy to extract features of library multi-carrier information con⁃ tent and user demands. Introduce the attention mechanism into the convolutional neural network to create an ATTCNN model. After capturing local features in the convolutional layer, the attention layer selectively focuses on relevant parts of input data by learning weight distribution to extract information content features. Map data to a high-dimensional feature space with a kernel function and conduct clustering to find data′s internal structure and distribution patterns for extracting user demand features. Secondly, use the Apriori algorithm to obtain the matching relationship between them, and screen out information meeting users′ personalized needs based on strong correlations for intelligent recommendation.【Result/conclusion】Experiments demonstrate that when the ATTCNN model and kernel clustering algorithm are used for feature extraction, the F1 score stays above 0.9, the matching degree of recom⁃ mended information exceeds 92%, and user satisfaction is over 89%. This proves the method can precisely recommend information and boost user satisfaction.【Innovation/limitation】The innovation is using a semantic dual-channel feature extraction strategy and in⁃ tegrating multiple algorithms for accurate recommendation.