情报科学 ›› 2024, Vol. 42 ›› Issue (6): 12-20.

• 专论 • 上一篇    下一篇

在线健康社区重大慢病患者负面评论倾向的关键影响因素分析

  

  • 出版日期:2023-06-01 发布日期:2024-07-31

  • Online:2023-06-01 Published:2024-07-31

摘要: 【 目的/意义】基于在线健康社区中患者生成文本进行情报分析,挖掘出影响重大慢病患者评论负面倾向的 关键因素,为有针对性地提高重大慢病患者的满意度、改善重大慢病线上线下医疗服务水平、缓解医患矛盾提供重 要参考。【方法/过程】基于好大夫在线健康社区中重大慢病患者评论数据,构建基础词典并采用SOPMI算法扩充情 感词典的情感分析方法,通过BERTopic方法对重大慢病患者负面评论进行主题特征分析。【结果/结论】影响重大 慢病患者评论负面倾向的关键维度为:医疗服务的治疗效果、医患交流质量、医生专业技能、医生品德和个人特质 以及医患交互的常态化关系维护等,并结合关键维度提出了相应对策与建议。【创新/局限】将文本挖掘技术引入到 在线医疗领域,基于重大慢病患者评论分类后的负面评论数据,采用深度学习模型挖掘影响患者满意度的关键因 素。为重大慢病患者评论负面倾向的关键影响因素识别提供了数据科学的研究范式。

Abstract: 【Purpose/significance】Based on patient generated text in online health communities, intelligence analysis is conducted to identify key factors that affect the negative tendency of critical chronic disease patients to comment. This provides important reference for targeted improvement of satisfaction for critical chronic disease patients, improvement of online and offline medical service levels for critical chronic disease, and alleviation of doctor-patient conflicts【. Method/process】Based on the review data of major chronic dis⁃ ease patients in the online health community of Good Doctor, a basic dictionary is constructed and the SOPMI algorithm is used to ex⁃ pand the sentiment analysis method of the sentiment dictionary. The BERTopic method is used to analyze the thematic features of negative reviews of major chronic disease patients.【 Result/conclusion】The key dimensions that affect the negative tendency of critical chronic disease patients to comment on are: the treatment effectiveness of medical services, the quality of doctor-patient communica⁃ tion, professional skills of doctors, medical ethics and personal characteristics, and the maintenance of normalized doctor-patient inter⁃ action. Corresponding strategies and suggestions are proposed based on the key dimensions.【 Innovation/limitation】This article intro⁃ duces text mining technology to the field of online healthcare, and uses deep learning models to explore key factors that affect patient satisfaction based on negative comment data classified from major chronic disease patients. Providing a data science research para⁃ digm for identifying key influencing factors of negative tendencies in critical chronic disease patients′ comments.