情报科学 ›› 2024, Vol. 42 ›› Issue (11): 69-75.

• 理论研究 • 上一篇    下一篇

基于深度主题自编码器模型的电影短评数据情感分析研究

  

  • 出版日期:2024-11-01 发布日期:2025-04-08

  • Online:2024-11-01 Published:2025-04-08

摘要: 【目的/意义】随着大数据技术的发展,越来越多的网民通过网络平台表达个人的意见和看法。因此,深入 挖掘网络舆情,了解个人情感态度变得尤为重要。【方法/过程】本文提出一种深度主题自编码器模型(DTAM),该 模型将自编码器、生成对抗网络和LDA模型相结合。通过融合自编码器的特征提取能力、生成对抗网络的生成能 力以及 LDA 的主题发现功能,DTAM 模型能够更加准确地对电影短评中的主题词进行分类。【结果/结论】实验结 果表明,生成的主题分类能够较好地反映评论中的主要观点和情感倾向,不仅帮助研究人员更全面地理解观众的 观影体验和情感反馈,还为电影制作和市场营销提供有价值的参考数据。【创新/局限】本文拓展DTAM模型在影评 数据中的应用,提高电影评论的主题分类效果,为电影主题分析提供新思路。然而,本研究仅限于电影短评的情感 分析,并未考虑其他因素。

Abstract: 【Purpose/significance】With the development of big data technology, an increasing number of internet users express their opinions and views through online platforms. Therefore, deeply mining online public opinion and understanding individual emotional attitudes has become particularly important【. Method/process】This paper proposes a Deep Topic Autoencoder Model (DTAM) that inte⁃ grates autoencoders, Generative Adversarial Networks (GANs), and the Latent Dirichlet Allocation (LDA) model. By combining the fea⁃ ture extraction capabilities of autoencoders, the generative power of GANs, and the topic discovery functionality of LDA, the DTAM model can more accurately classify thematic words in movie reviews【. Result/conclusion】Experimental results indicate that the gener⁃ ated topic classifications effectively reflect the main viewpoints and emotional tendencies in the reviews. This not only helps research⁃ ers to comprehensively understand audience movie-watching experiences and emotional feedback but also provides valuable reference data for movie production and marketing【. Innovation/limitation】This paper expands the application of the DTAM model in movie re⁃ view data, improving the effectiveness of topic classification for movie reviews and providing new insights for movie theme analysis. However, this study is limited to sentiment analysis of short movie reviews and does not consider time factors.