情报科学 ›› 2024, Vol. 42 ›› Issue (10): 133-143.

• 业务研究 • 上一篇    下一篇

基于复杂网络的电力系统数据风险演化模型#br# ——以海上油气田为例

  

  • 出版日期:2024-10-01 发布日期:2025-03-27

  • Online:2024-10-01 Published:2025-03-27

摘要: 【 目的/意义】本文提出一种创新的方法来识别海上油气田电力系统数据风险稳定性潜在的风险因素和可 能的事故升级后果,基于有向加权复杂网络(DWCN)的原理,将蝴蝶结(BT)理论、风险熵和改进的蚁群系统优化 模型(ACOSI)集成到该方法中。并确定事故从原因到后果的演变,从而识别最可能的路径并快速发现路径上的关 键数据风险因素。【方法/过程】首先,基于BT模型对数据风险演化进行了定性分析。其次,基于事故抑制的演化发 展可分为两个阶段。最后,基于ACOSI算法对数据风险演化进行了最短路径分析,引入模糊集理论计算风险因素 的失效概率,并用风险熵表示风险传播的不确定性。【结果/结论】本文算法适用于计算数据风险演化的最短路径, 并可以应用于海上油气田电力系统稳定性中的特定情况。【创新/局限】实验结果表明,本文提出的数据风险演化方 法是识别最短进化路径和最脆弱风险因素的有效方法,能提升电力系统数据风险的识别能力。

Abstract: 【 Purpose/significance】 Propose an innovative method to identify potential risk factors and potential accident escalation con⁃ sequences for the data stability of offshore oil and gas field power systems. Based on the principle of Directed Weighted Complex Net⁃ work (DWCN), integrate the Bowtie (BT) model, risk entropy, and improved Ant Colony Optimization (ACOSI) algorithm into this method. And determine the evolution of the accident from cause to effect, in order to identify the most likely path and quickly identify key data risk factors along the path. [Method/process] This article first qualitatively analyzes the evolution of data risk based on the BT model. Secondly, the evolution and development based on accident suppression can be divided into two stages. Finally, based on the ACOSI algorithm, the shortest path analysis of data risk evolution was conducted. Fuzzy set theory was introduced to calculate the fail⁃ ure probability of risk factors, and risk entropy was used to represent the uncertainty of risk propagation.【 Result/conclusion 】 This al⁃ gorithm is suitable for calculating the shortest path of data risk evolution and can be applied to specific situations in the stability of off⁃ shore oil and gas field power systems.【 Innovation/limitation 】The experimental results show that the data risk evolution method pro⁃ posed in this paper is an effective method for identifying the shortest evolution path and the most vulnerable risk factors, and can im⁃ prove the ability to identify data risks in the power system.