Abstract:[Background] Pisha sandstone area is one of the most serious soil erosion areas in the Loess Plateau. The government has given great attention to the ecological recovery of Pisha sandstone area and has implied a lot of researches in this area. However, the treatment effect is not very satisfactory at present. One reason lies in the lack of detailed classification of geomorphological types in the study area. Geomorphological characteristics have important influence and restriction on soil erosion and other surface processes as well as ecological restoration. The fine classification of geomorphological types can make the ecological construction of soil and water conservation zoning, according to local conditions, has important practical significance. This work is to clarify the eroded geomorphological characteristics of Pisha sandstone area and provide precise measures for soil erosion control.[Methods] Based on the DEM data of 30 m resolution in the research area, the best statistical window of relief degree was determined by mean change-point analysis, and the optimal topographic factors were determined by combination of correlation coefficient and principal component analysis. On this basis, the geomorphological characteristics and spatial distribution of the study area were analyzed.[Results] 1) The best statistical window of relief degree in Pisha sandstone area under this scale data source is 16×16 (0.230 4 km2). 2) The best combination of topographical factors in this area are surface cutting depth, profile curvature, slope, elevation and variation of slope aspect, and the cumulative contribution rate is more than 70%. 3) The surface cutting in the Pisha sandstone area is in the middle level, mainly in the eastern part of the study area. The overall altitude is higher and 94.53% of the area is in the middle altitude. The slope is chiefly gentle slope and ramp, and the two total areas account for 99% of Pisha sandstone area. The gentle slope is distributed in the western part of the study area, the ramp is distributed in the east, and the variation of slope aspect is mostly between 15°-75°. 4) The main landform types include tableland and hill, which are distributed in the whole Pisha sandstone area, with an area ratio of 88.92%.[Conclusions] The results reveal the geomorphological characteristics and spatial distribution of the Pisha sandstone area, which is of practical significance to the ecological construction of soil and water conservation in this area. It helps to efficiently control the erosion area and provides reference for other erosion areas.
杨玉春, 齐雁冰, 付金霞, 吴娟. 基于DEM的地貌特征分析与类型划分——以砒砂岩区为例[J]. 中国水土保持科学, 2019, 17(6): 1-10.
YANG Yuchun, QI Yanbing, FU Jinxia, WU Juan. DEM based geomorphic features and classification: A case study in the Pisha sandstone area. SSWC, 2019, 17(6): 1-10.
任静,陈亮. 基于SRTM DEM的河南省地貌特征分析与类型划分[J]. 河南科学, 2011, 29(9):1113. REN Jing, CHEN Liang. Landform characters analysis and classifying of Henan province based on digital elevation model in shuttle radar topography mission data format[J]. Henan Science, 2011, 29(9):1113.
[2]
LIU Jing, XIA Zhengkai. Fluvial geomorphology of Zhaitang basin and water and soil erosion since 10000 a B. P[J]. Research of Soil & Water Conservation, 2005.
[3]
DEKAVALLA M, ARGIALAS D. Object-based classification of global undersea topography and geomorphological features from the SRTM30_PLUS data[J]. Geomorphology, 2017, 288:66.
[4]
周成虎, 程维明, 钱金凯, 等. 中国陆地1:100万数字地貌分类体系研究[J]. 地球信息科学学报, 2009, 11(6):707. ZHOU Chenghu, CHENG Weiming, QIAN Jinkai, et al. Research on the classification system of digital land geomorphology of 1:1000000 in China[J]. Journal of GeoInformation Science, 2009, 11(6):707.
[5]
徐珍, 赵焕, 黎武. 基于DEM的江西省弋阳县地貌形态研究[J]. 四川林勘设计, 2016(2):31. XU Zhen, ZHAO Huan, LI Wu. Research on the geomorphologic forms of Yiyang county in Jiangxi province based on DEM[J]. Sichuan Forestry Exploration and Design, 2016(2):31.
[6]
李炳元, 潘保田, 韩嘉福. 中国陆地基本地貌类型及其划分指标探讨. 第四纪研究, 2008, 28(4):535. LI Bingyuan, PAN Baotian, HAN Jiafu. Basic terrestrial geomorphological types in China and their circumscriptions[J]. Quaternary Sciences, 2008, 28(4):535.
[7]
程维明, 周成虎, 柴慧霞, 等. 中国陆地地貌基本形态类型定量提取与分析[J]. 地球信息科学学报, 2009, 11(6):725. CHENG Weiming, ZHOU Chenghu, CHAI Huixia, et al. Quantitative extraction and analysis of basic morphological types of land geomorphology in China[J]. Journal of Geo-Information Science, 2009, 11(6):725.
[8]
欧定华, 夏建国, 张莉, 等. RS和GIS技术在中尺度景观类型划分与制图中的应用:以成都市龙泉驿区为例[J]. 生态学杂志, 2015, 34(10):2971. OU Dinghua, XIA Jianguo, ZHANG Li, et al. The application of RS and GIS technology in meso-scale landscape classification and cartography:A case study in Longquanyi district of Chengdu[J]. Chinese Journal of Ecology, 2015, 34(10):2971.
[9]
胡续礼, 张光灿, 徐志强, 等. 桐柏大别山区水土保持生态修复适宜性评价与分区[J]. 水土保持通报, 2014, 34(5):258. HU Xuli, ZHANG Guangcan, XU Zhiqiang, et al. Suitability evaluation and regionalization of soil and water conservation ecological restoration in Tongbai Dabie mountain area[J]. Bulletin of Soil and Water Conservation, 2014, 34(5):258.
[10]
和继军, 蔡强国, 方海燕, 等. 张家口地区水土保持措施空间配置效应评价[J]. 农业工程学报, 2009, 25(10):69. HE Jijun, CAI Qiangguo, FANG Haiyan, et al. Effect evaluation of spatial allocation of water and soil conservation measures in Zhangjiakou area[J]. Transactions of the CSAE, 2009, 25(10):69.
[11]
王愿昌, 吴永红, 李敏. 砒砂岩地区水土流失及其治理途径研究[M]. 郑州:黄河水利出版社, 2007. WANG Yuanchang, WU Yonghong, LI Min. Research on governance approach of soil erosion in arsenic sandstone areas[M]. Zhengzhou:Yellow River Water Conservancy Press, 2007.
[12]
姚文艺, 史俊庭. 破解地球生态癌症的密码[M]. 郑州, 人民黄河, 2017(5):87. YAO Wenyi, SHI Junting. Password for Earth's ecological cancer[M]. Zhengzhou, Yellow River, 2017(5):87.
[13]
陈科皓, 韩霁昌, 程杰, 等. 砒砂岩研究进展及利用前景[J]. 中国农学通报, 2016, 32(17):72. CHEN Kehao, HAN Jichang, CHENG Jie, et al. Research progress and utilization prospect of soft rock[J]. Chinese Agricultural Science Bulletin, 2016, 32(17):72.
[14]
姚文艺, 吴智仁, 刘慧, 等. 黄河流域砒砂岩区抗蚀促生技术试验研究[J]. 人民黄河, 2015, 37(1):6. YAO Wenyi, WU Zhiren, LIU Hui, et al. Experimental research on the anti-erosion and vegetation promotion for sandstone region in the Yellow River basin[J]. Yellow River, 2015, 37(1):6.
[15]
张传才, 秦奋, 王海鹰, 等. 砒砂岩区地貌形态三维分形特征量化及空间变异[J]. 地理科学, 2016, 36(1):142. ZHANG Chuancai, QIN Fen, WANG Haiying, et al. Quantization and spatial variation of topographic features using 3D fractal dimensions in arsenic rock area[J]. Scientia Geographica Sinica, 2016, 36(1):142.
[16]
常直杨, 王建, 白世彪, 等. 基于DEM数据的地貌分类研究:以西秦岭为例[J]. 中国水土保持, 2014(4):56. CHANG Zhiyang, WAN GJian, BAI Shibiao, et al. Geomorphologic classification study based on DEM data:A case study of West Qinling mountains[J]. Soil and Water Conservation in China, 2014(4):56.
[17]
蒋国富. 基于SRTM DEM与ArcGIS的南阳市地貌形态类型的自动划分[J]. 南阳师范学院学报, 2015(12):43. JIANG Guofu. Automatic classification of landform types in Nanyang based on SRTM DEM and ArcGIS[J]. Journal of Nanyang Normal University, 2015(12):43.
[18]
韩海辉, 王艺霖, 李健强, 等. 雷达地形测绘DEM用于青藏高原地貌分类[J]. 遥感信息, 2015(4):43. HAN Haihui, WANG Yilin, LI Jianqiang, et al. Classification of Tibetan plateau landform using SRTM DEM[J]. Remote-sensing Information, 2015(4):43.
[19]
陈学兄, 常庆瑞, 郭碧云, 等. 基于SRTM DEM数据的中国地形起伏度分析研究[J]. 应用基础与工程科学学报, 2013, 21(4):670. CHEN Xuexiong, CHANG Qingrui, GUO Biyun, et al. Analytical study of the relief amplitude in China based on SRTM DEM data[J]. Journal of Basic Science and Engineering, 2013, 21(4):670.
[20]
舒天竹, 王晓红. 基于3S技术的地形起伏度与区域土壤侵蚀的相关性研究[J]. 水土保持研究, 2017, 24(4):127. SHU Tianzhu, WANG Xiaohong. Research for the correlation between relief amplitude and regional soil erosion based on 3S technology[J]. Research of Soil and Water Conservation, 2017, 24(4):127.
[21]
王玲, 吕新. 基于DEM的新疆地势起伏度分析[J]. 测绘科学, 2009, 34(1):113. WANG Ling, LV Xin. Analysis topography relief degree of land surface in Xinjiang based on DEM[J]. Science of Surveying and Mapping, 2009, 34(1):113.
[22]
冯玉祥, 邓青春, 杨海青, 等. 基于变点分析法提取元谋县地形起伏度[J]. 四川林勘设计, 2015(3):28. FENG Yuxiang, DENG Qingchun, YANG Haiqing, et al. Extraction of relief amplitude of Yuanmou county based on change point method[J]. Sichuan Forestry Exploration and Design, 2015(3):28.
[23]
范鹏宇, 朱校娟, 郭啸川. 基于DEM的地形起伏度最佳计算尺度的研究:以仙居县为例[J]. 地矿测绘, 2016, 32(4):36. FAN Pengyu, ZHU Xiaojuan, GUO Xiaochuan. Study on optimal scale for calculating relief amplitude based on DEM:A case study of Xianju county[J]. Surveying and Mapping of Geology and Mineral Resources, 2016, 32(4):36.
[24]
张宗伟, 张冉. 基于DEM的水土流失分析[J]. 测绘与空间地理信息, 2012, 35(8):175. ZHANG Zongwei, ZHANG Ran. Analysis of soil and water loss based on DEM[J]. Geomatics & Spatial Information Technology, 2012, 35(8):175.
[25]
褚永彬, 朱利东, 唐斌, 等. 疏勒河上游流域地面坡谱特征[J]. 干旱区地理, 2015, 38(2):345. CHU Yongbing, ZHU Lidong, TANG Bin, et al. Slope spectrum characteristics of the Shule river's upstream basin[J]. Arid Land Geography, 2015, 38(2):345.
[26]
李蒙蒙, 赵媛媛, 高广磊, 等. DEM分辨率对地形因子提取精度的影响[J]. 中国水土保持科学, 2016, 14(5):15. LI Mengmeng, ZHAO Yuanyuan, GAO Guanglei, et al. Effects of DEM resolution on the accuracy of topographic factor derived from DEM[J]. Science of Soil and Water Conservation, 2016, 14(5):15.
[27]
张晖, 王晓峰, 余正军. 基于ArcGIS的坡面复杂度因子提取与分析:以黄土高原为例[J]. 华中师范大学学报(自然科学版), 2009, 43(2):323. ZHANG Hui, WANG Xiaofeng, YU Zhengjun. Slope surface complexity factor extract and analysis based on ArcGIS:A case study of loess plateau[J]. Journal of Huangzhong Normal University (Natural Sciences), 2009, 43(2):323.
[28]
张宇. 滇池沿岸台地水土、氮磷流失特征与控制对策分析[J]. 环境科学导刊, 2006, 25(1):33. ZHANG Yu. Countermeasure and characteristic of soil and water loss and nitrogen and phosphorus loss in the mesa areas of Dianchi Lakeside[J]. Environmental Science Survey, 2006, 25(1):33.
[29]
陶禹, 向风雅, 任文海, 等. 花岗岩红壤坡面工程措施初期的水土保持效果[J]. 水土保持学报, 2015, 29(5):34. TAO Yu, XIANG Fengya, REN Wenhai, et al. Effect of engineering measures on soil and water conservation on granite red soil slope[J]. Journal of Soil and Water Conservation, 2015, 29(5):34.