[an error occurred while processing this directive] | [an error occurred while processing this directive]
Research progress on image standard database of artificial intelligence-assisted radiotherapy for lung cancer
Han Ziming, Zhang Tao, Men Kuo, Bi Nan
Department of Radiation Oncology, National Cancer Center / National Clinical Research Center for Cancer / Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
Abstract Lung cancer is the malignant tumor with the highest mortality rate in the world. Radiotherapy plays an important role in the comprehensive treatment of lung cancer. With the continuous advancement of radiotherapy technology and equipment, it has become one of the effective therapeutic options for lung cancer. In recent years, artificial intelligence technology has developed rapidly and has been widely applied in clinical practice, especially in the diagnosis and treatment of lung cancer imaging. The image database can be obtained by sorting and summarizing the images, which can be used in clinical work and scientific research. In this article, the application of artificial intelligence in lung cancer radiotherapy imaging and lung cancer imaging database was reviewed, aiming to provide reference for the construction of artificial intelligence radiotherapy imaging database for lung cancer.
Fund:Capital's Funds for Health Improvement and Research (2020-2-4022)
Corresponding Authors:
Bi Nan, Email: binan_email@163.com
Cite this article:
Han Ziming,Zhang Tao,Men Kuo et al. Research progress on image standard database of artificial intelligence-assisted radiotherapy for lung cancer[J]. Chinese Journal of Radiation Oncology, 2023, 32(1): 86-90.
Han Ziming,Zhang Tao,Men Kuo et al. Research progress on image standard database of artificial intelligence-assisted radiotherapy for lung cancer[J]. Chinese Journal of Radiation Oncology, 2023, 32(1): 86-90.
[1] Chen W, Zheng R, Baade PD, et al.Cancer statistics in China, 2015[J]. CA Cancer J Clin, 2016,66(2):115-132. DOI: 10.3322/caac.21338. [2] 李欣菱, 王颖. 人工智能在肺结节检测与诊断中的应用及发展[J].新发传染病电子杂志, 2019,4(3):185-189. DOI: 10.3877/j.issn.2096-2738.2019.03.014. Li XL, Wang Y.Application and development of artificial intelligence in detection and diagnosis of pulmonary nodules[J]. Electronic Journal of Emerging Infectious Diseases, 2019,4(3):185-189. DOI: 10.3877/j.issn.2096-2738.2019.03.014. [3] 杜伟. 人工智能识别技术在肺癌诊断中的应用价值[J].中国新通信,2020,22(15):122. DOI: 10.3969/j.issn.1673-4866.2020.15.106. Du W.Application value of artificial intelligence recognition technology in lung cancer diagnosis[J]. China New Communications, 2020, 22(15): 122. DOI: 10.3969/j.issn.1673-4866.2020.15.106. [4] Teramoto A, Tsukamoto T, Yamada A, et al.Deep learning approach to classification of lung cytological images: two-step training using actual and synthesized images by progressive growing of generative adversarial networks[J]. PLoS One, 2020,15(3):e0229951. DOI: 10.1371/journal.pone.0229951. [5] 吴坤, 皮国良. 肺癌放射治疗的应用策略及研究进展[J].临床内科杂志,2020,37(2):78-81. DOI: 10.3969/j.issn.1001-9057.2020.02.002. Wu K,Pi GL.Application strategy and research progress of radiotherapy for lung cancer[J]. Journal of Clinical Internal Medicine, 2020,37(2):78-81. DOI: 10.3969/j.issn.1001-9057.2020.02.002. [6] Mak RH, Endres MG, Paik JH, et al.Use of crowd innovation to develop an artificial intelligence-based solution for radiation therapy targeting[J]. JAMA Oncol, 2019,5(5):654-661. DOI: 10.1001/jamaoncol.2019.0159. [7] Bi N, Wang J, Zhang T, et al.Deep learning improved clinical target volume contouring quality and efficiency for postoperative radiation therapy in non-small cell lung cancer[J]. Front Oncol, 2019,9:1192. DOI: 10.3389/fonc.2019.01192. [8] Feng X, Qing K, Tustison NJ, et al.Deep convolutional neural network for segmentation of thoracic organs-at-risk using cropped 3D images[J]. Med Phys, 2019,46(5):2169-2180. DOI: 10.1002/mp.13466. [9] Xing Y, Nguyen D, Lu W, et al.Technical note: a feasibility study on deep learning-based radiotherapy dose calculation[J]. Med Phys, 2020,47(2):753-758. DOI: 10.1002/mp.13953. [10] Yuan L, Zhu W, Ge Y, et al.Lung IMRT planning with automatic determination of beam angle configurations[J]. Phys Med Biol, 2018,63(13):135024. DOI: 10.1088/1361-6560/aac8b4. [11] Bai X, Shan G, Chen M, et al.Approach and assessment of automated stereotactic radiotherapy planning for early stage non-small-cell lung cancer[J]. Biomed Eng Online, 2019,18(1):101. DOI: 10.1186/s12938-019-0721-7. [12] Lou B, Doken S, Zhuang T, et al.An image-based deep learning framework for individualizing radiotherapy dose[J]. Lancet Digit Health, 2019,1(3):e136-e147. DOI: 10.1016/S2589-7500(19)30058-5. [13] Chen S, Zhou S, Yin FF, et al.Investigation of the support vector machine algorithm to predict lung radiation-induced pneumonitis[J]. Med Phys, 2007,34(10):3808-3814. DOI: 10.1118/1.2776669. [14] Valdes G, Scheuermann R, Hung CY, et al.A mathematical framework for virtual IMRT QA using machine learning[J]. Med Phys, 2016,43(7):4323. DOI: 10.1118/1.4953835. [15] Li Q, Chan MF.Predictive time-series modeling using artificial neural networks for Linac beam symmetry: an empirical study[J]. Ann N Y Acad Sci, 2017,1387(1):84-94. DOI: 10.1111/nyas.13215. [16] Kress MA, Jensen RE, Tsai HT, et al.Radiation therapy at the end of life: a population-based study examining palliative treatment intensity[J]. Radiat Oncol, 2015,10:15. DOI: 10.1186/s13014-014-0305-4. [17] Kida S, Nakamoto T, Nakano M, et al.Cone beam computed tomography image quality improvement using a deep convolutional neural network[J]. Cureus, 2018,10(4):e2548. DOI: 10.7759/cureus.2548. [18] Armato SG, McLennan G, Bidaut L, et al. The lung image database consortium (LIDC) and image database resource initiative (IDRI): a completed reference database of lung nodules on CT scans[J]. Med Phys, 2011,38(2):915-931. DOI: 10.1118/1.3528204. [19] Pehrson LM, Nielsen MB, Ammitzbøl Lauridsen C.Automatic pulmonary nodule detection applying deep learning or machine learning algorithms to the LIDC-IDRI database: a systematic review[J]. Diagnostics (Basel), 2019,9(1):29. DOI: 10.3390/diagnostics9010029. [20] Setio A, Traverso A, de Bel T, et al. Validation, comparison, and combination of algorithms for automatic detection of pulmonary nodules in computed tomography images: the LUNA16 challenge[J]. Med Image Anal, 2017,42:1-13. DOI: 10.1016/j.media.2017.06.015. [21] van Ginneken B, Armato SG, de Hoop B, et al. Comparing and combining algorithms for computer-aided detection of pulmonary nodules in computed tomography scans: the ANODE09 study[J]. Med Image Anal, 2010,14(6):707-722. DOI: 10.1016/j.media.2010.05.005. [22] Yang J, Veeraraghavan H, van Elmpt W, et al. CT images with expert manual contours of thoracic cancer for benchmarking auto-segmentation accuracy[J]. Med Phys, 2020,47(7):3250-3255. DOI: 10.1002/mp.14107. [23] 张福玲, 张少敏. 应用于CT图像肺结节检测的深度学习方法综述[J].计算机工程与应用,2020,56(13):20-32. DOI: 10.3778/j.issn.1002-8331.2002-0051. Zhang FL, Zhang SM.Review of deep learning methods applied to lung nodule detection in CT images[J]. Computer Engineering and Applications, 2020,56(13):20-32. DOI: 10.3778/j.issn.1002-8331.2002-0051. [24] Winkler Wille MM, van Riel SJ, Saghir Z, et al. Predictive accuracy of the pancan lung cancer risk prediction model-external validation based on CT from the danish lung cancer screening trial[J]. Eur Radiol, 2015,25(10):3093-3099. DOI: 10.1007/s00330-015-3689-0. [25] Wu Y, Li P, Zhang H, et al.Diagnostic value of fluorine 18 fluorodeoxyglucose positron emission tomography/computed tomography for the detection of metastases in non-small-cell lung cancer patients[J]. Int J Cancer, 2013,132(2):E37-47. DOI: 10.1002/ijc.27779. [26] Masood A, Yang P, Sheng B, et al.Cloud-based automated clinical decision support system for detection and diagnosis of lung cancer in chest CT[J]. IEEE J Transl Eng Health Med, 2020,8:4300113. DOI: 10.1109/JTEHM.2019.2955458. [27] Li Y, Fan Y.DeepSEED: 3D squeeze-and-excitation encoder-decoder convolutional neural networks for pulmonary nodule detection[J]. Proc IEEE Int Symp Biomed Imaging, 2020,2020:1866-1869. DOI: 10.1109/ISBI45749.2020.9098317. [28] Tran GS, Nghiem TP, Nguyen VT, et al.Improving accuracy of lung nodule classification using deep learning with focal loss[J]. J Healthc Eng, 2019,2019:5156416. DOI: 10.1155/2019/5156416. [29] Anitha S, Ganesh Babu TR.An efficient method for the detection of oblique fissures from computed tomography images of lungs[J]. J Med Syst, 2019,43(8):252. DOI: 10.1007/s10916-019-1396-0. [30] Xie Y, Padgett J, Biancardi AM, et al.Automated aorta segmentation in low-dose chest CT images[J]. Int J Comput Assist Radiol Surg, 2014,9(2):211-219. DOI: 10.1007/s11548-013-0924-5. [31] Clark K, Vendt B, Smith K, et al.The cancer imaging archive (TCIA): maintaining and operating a public information repository[J]. J Digit Imaging, 2013,26(6):1045-1057. DOI: 10.1007/s10278-013-9622-7. [32] Nemoto T, Futakami N, Yagi M, et al.Efficacy evaluation of 2D, 3D U-Net semantic segmentation and atlas-based segmentation of normal lungs excluding the trachea and main bronchi[J]. J Radiat Res, 2020,61(2):257-264. DOI: 10.1093/jrr/rrz086. [33] 张毛蛋. 肿瘤多模态影像放疗靶区分割深度学习方法[D]. 长沙:湖南大学, 2020. Zhang MD.Depth learning method for tumor multi-mode image radiotherapy target segmentation[D]. Changsha: Hu'nan University, 2020. [34] Yang J, Veeraraghavan H, Armato SG, et al.Autosegmentation for thoracic radiation treatment planning: a grand challenge at AAPM 2017[J]. Med Phys, 2018,45(10):4568-4581. DOI: 10.1002/mp.13141. [35] 孙颖, 李超峰, 林丽, 等. 鼻咽癌专病科研数据库建设与应用[J].中国数字医学,2021,16(1):7-12. DOI: 10.3969/j.issn.1673-7571.2021.01.002. Sun Y, Li CF, Lin L, et al.Establishment and application of database for nasopharyngeal carcinoma[J].China Digital Medicine,2021,16(1):7-12. DOI: 10.3969/j.issn.1673-7571.2021.01.002.