[an error occurred while processing this directive] | [an error occurred while processing this directive]
Study of sub-region segmentation of brain metastases based on magnetic resonance perfusion imaging
Hou Chuanke1,2, Gong Guanzhong2, Wang Lizhen2, Su Ya2, Lu Jie2, Yin Yong2
1Department of Graduate, Shandong First Medical University (Shandong Academy of Medical Sciences), Taian 271016, China; 2Department of Radiation Physics, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Ji′nan 250117, China
AbstractObjective To evaluate the feasibility of magnetic resonance (MR) perfusion imaging for sub-region segmentation of brain metastases (BMs), and to provide reference for individualized radiotherapy based on blood flow perfusion heterogeneity in BMs patients. Methods 96 BMs patients were selected, including 55 patients with necrosis and 41 without necrosis. Each patient was scanned with CT simulation and MR simulation before radiotherapy. MIM Maestro 6.8.8software was used to delineate the gross tumor volume (GTV) and necrosis GTV (GTVN) from enhanced T1W images and T2 Propeller images, respectively, and the solid GTV (GTVS) was obtained by the subtraction of the two. Then, the cerebral blood flow map of three dimensional arterial spin labeling (3D-ASL) was employed to determine the high perfused GTV (GTVH) and low perfused GTV (GTVL). The volume and proportion of sub-regions were counted and compared between two groups and the correlation of each sub-region was analyzed. Results The volume of GTV in the necrosis and non-necrosis groups was 19.56 and 7.34cm3, respectively. Besides, the AUC of the ROC between GTV volume and necrosis was 0.749. In the necrosis group, the ratio of GTVN, GTVS, GTVH and GTVL to GTV was 20.47%, 79.53%, 33.03% and 46.50%, respectively (all P<0.05). Among them, the r value between GTVS and GTV was 0.963, 0.849 for GTVL and GTV, and 0.840 for GTVL and GTVS, significantly higher than 0.683 for GTVH and GTV and 0.764 for GTVH and GTVS (all P<0.05). In the non-necrosis group, the ratio of GTVH to GTV was higher than that in the necrosis group (58.95% vs. 33.03%, P<0.05). In addition, the ratio of GTVL to GTV was slightly lower than that in the necrosis group (41.05% vs. 46.50%, P>0.05). The r value between GTVH and GTV was 0.776, significantly higher than 0.574 between GTVL and GTV (P<0.05). Conclusion MR-3D-ASL can quantitatively analyze the heterogeneous blood perfusion of BMs, which could guide the sub-region segmentation and local dose escalation of tumors.
Hou Chuanke,Gong Guanzhong,Wang Lizhen et al. Study of sub-region segmentation of brain metastases based on magnetic resonance perfusion imaging[J]. Chinese Journal of Radiation Oncology, 2021, 30(10): 1047-1053.
Hou Chuanke,Gong Guanzhong,Wang Lizhen et al. Study of sub-region segmentation of brain metastases based on magnetic resonance perfusion imaging[J]. Chinese Journal of Radiation Oncology, 2021, 30(10): 1047-1053.
[1] Patchell RA. The management of brain metastases[J]. Cancer Treat Rev, 2003, 29(6):533-540. DOI:10.1016/s0305-7372(03)00105-1.
[2] 殷蔚伯,余子豪,徐国镇,等. 肿瘤放射治疗学[M]. 第4版. 北京:中国协和医科大学出版社,2008:1200-1206.
Yin WB, Yu ZH, Xu GZ, et al. Tumor Radiotherapy[M]. 4th ed. Beijing:Peking Union Medical College Press, 2008:1200-1206.
[3] Xin Y, Guo WW, Yang CS, et al. Meta-analysis of whole-brain radiotherapy plus temozolomide compared with whole-brain radiotherapy for the treatment of brain metastases from non-small-cell lung cancer[J]. Cancer Med, 2018, 7(4):981-990. DOI:10.1002/cam4.1306.
[4] Jeene PM, de Vries KC, van Nes JGH, et al. Survival after whole brain radiotherapy for brain metastases from lung cancer and breast cancer is poor in 6325 Dutch patients treated between 2000 and 2014[J]. Acta Oncol, 2018,57(5):637-643. DOI:10.1080/0284186X.2017.1418534.
[5] Borghetti P, Pedretti S, Spiazzi L, et al. Whole brain radiotherapy with adjuvant or concomitant boost in brain metastasis:dosimetric comparison between helical and volumetric IMRT technique[J]. Radiat Oncol, 2016, 11:59. DOI:10.1186/s13014-016-0634-6.
[6] Wells JA, Thomas DL, Saga T, et al. MRI of cerebral micro-vascular flow patterns:a multi-direction diffusion-weighted ASL approach[J]. J Cereb Blood Flow Metab, 2017, 37(6):2076-2083. DOI:10.1177/0271678X16660985.
[7] Choi YJ, Kim HS, Jahng GH, et al. Pseudoprogression in patients with glioblastoma:added value of arterial spin labeling to dynamic susceptibility contrast perfusion MR imaging[J]. Acta Radiol, 2013, 54(4):448-454. DOI:10.1177/0284185112474916.
[8] Li C, Yan JL, Torheim T, et al. Low perfusion compartments in glioblastoma quantified by advanced magnetic resonance imaging and correlated with patient survival[J]. Radiother Oncol, 2019, 134:17-24. DOI:10.1016/j.radonc.2019.01.008.
[9] 王家雄,李梅. 肿瘤脑转移血-脑屏障功能改变的基础与临床[J]. 中国微侵袭神经外科杂志,2019, 24(9):429-432. DOI:10.11850/j.issn.1009-122X.2019.09.015.
Wang JX, Li M. Basis and clinical change of tumor brain metastasis-brain barrier function[J]. Chin J Microinva Neurosurg, 2019, 24(9):429-432. DOI:10.11850/j.issn.1009-122X.2019.09.015.
[10] Jemal A, Siegel R, Ward E, et al. Cancer statistics, 2008[J]. CA Cancer J Clin, 2008, 58(2):71-96. DOI:10.3322/CA.2007.0010.
[11] Gállego-Pérez-Larraya J, Hildebrand J. Brain metastases[J]. Handb Clin Neurol, 2014, 121:1143-1157. DOI:10.1016/B978-0-7020-4088-7.00077-8.
[12] 吴志军. 多发脑胶质瘤特征影像表现及肿瘤异质性的多模态MRI研究[D]. 广州:南方医科大学,2019.
Wu ZJ. Multi-modal MRI study of multiple glioma features and tumor heterogeneity[D]. Guangzhou:South Med Univ, 2019.
[13] 林宏远,伊志强,张家湧. 脑转移瘤的病理学及生物学研究进展[J]. 中华神经外科杂志,2015, 31(11):1181-1183. DOI:10.3760/cma.j.issn.1001-2346.2015.11.025.
Lin HY, Yi ZQ, Zhang JY. Progress in the Pathology and Biology of brain metastases[J]. Chin J Neurosurg, 2015, 31(11):1181-1183. DOI:10.3760/cma.j.issn.1001-2346.2015.11.025.
[14] Fidler IJ. The biology of brain metastasis:challenges for therapy[J]. Cancer J, 2015, 21(4):284-293. DOI:10.1097/PPO.0000000000000126.
[15] Scott JN, Brasher PM, Sevick RJ,et al. How often are nonenhancing supratentorial gliomas malignant? A population study[J]. Neurology, 2002, 59(6):947-949. DOI:10.1212/wnl.59.6.947.
[16] 车英玉,杨子涛,程敬亮.3D ASL与DSC灌注技术在脑肿瘤的对比研究[J]. 临床放射学杂志,2014, 33(5):770-774. DOI:10.13437/j.cnki.jcr.2014.05.032.
Che YY, Yang ZT, Cheng JL. Comparative study of 3D ASL and DSC perfusion techniques in brain tumors[J]. J Clin Radiol, 2014, 33(5):770-774. DOI:10.13437/j.cnki.jcr.2014.05.032.
[17] 周欣,刘尼军,张华文,等. 不同类型脑转移瘤的磁共振灌注特点分析[J]. 中华神经外科疾病研究杂志,2018, 17(4):345-348.
Zhou X, Liu NJ, Zhang HW, et al. Analysis of MR fusion characteristics of different types of brain metatomas[J]. Chin J Neurosurg Dis Res, 2018, 17(4):345-348.
[18] 陈鑫,张永利,唐震,等.MR弥散、灌注、波谱成像在单发脑转移瘤与恶性胶质瘤鉴别诊断中的价值[J]. 实用放射学杂志,2008, 24(11):1450-1453. DOI:10.3969/j.issn.1002-1671.2008.11.004.
Chen X, Zhang YL, Tang Z, et al. The value of MR dispersion, perfusion, and spectroscopic imaging in the differential diagnosis of single brain metastases and malignant glioma[J]. J Pract Radiol, 2008, 24(11):1450-1453. DOI:10.3969/j.issn.1002-1671.2008.11.004.
[19] Martens K, Meyners T, Rades D, et al. The prognostic value of tumor necrosis in patients undergoing stereotactic radiosurgery of brain metastases[J]. Radiat Oncol, 2013, 8:162. DOI:10.1186/1748-717X-8-162.
[20] 谢晟,丁建平,肖江喜,等. 脑转移瘤的灌注成像研究[J]. 实用放射学杂志,2004, 20(10):875-876. DOI:10.3969/j.issn.1002-1671.2004.10.004.
Xie S, Ding JP, Xiao JX, et al. Perfusion imaging study of brain metastases[J]. J Pract Radiol, 2004, 20(10):875-876. DOI:10.3969/j.issn.1002-1671.2004.10.004.
[21] 郭敏,刘宏,曹金发. 肿瘤乏氧放射增敏剂的研究进展[J]. 中国药师,2015, 18(5):856-858. DOI:10.3969/j.issn.1008-049X.2015.05.054.
Guo M, Liu H, Cao JF. Progress in the study of tumor spent oxygen radiosensitizers[J]. Chin Pharma, 2015, 18(5):856-858. DOI:10.3969/j.issn.1008-049X.2015.05.054.
[22] 侯传珂,巩贯忠,王俪臻,等. 三维动脉自旋标记成像量化脑转移瘤放疗前后灌注变化的研究[J]. 中国肿瘤临床,2020, 47(1):18-23. DOI:10.3969/j.issn.1000-8179.2020.01.279.
Hou CK, Gong GZ, Wang LZ, et al. Study on the quantification of perfusion changes before and after radiotherapy[J]. Clin J Clin Oncol, 2020, 47(1):18-23. DOI:10.3969/j.issn.1000-8179.2020.01.279.
[23] 汪隽琦,李龙根,徐志勇,等. 食管癌靶区剂量不均匀性提高在逆向调强计划中的应用[J]. 中华放射医学与防护杂志,2011, 31(4):453-455. DOI:10.3760/cma.j.issn.0254-5098.2011.04.020.
Wang JQ, Li LG, Xu ZY, et al. Application of increased dose homogeneity in esophageal cancer in reverse intensity planning[J]. Chin J Radiol Protect, 2011, 31(4):453-455. DOI:10.3760/cma.j.issn.0254-5098.2011.04.020.
[24] Tanaka Y, Inoue Y, Abe Y, et al. Reliability of 3D arterial spin labeling MR perfusion measurements:The effects of imaging parameters, scanner model, and field strength[J]. Clin Imaging, 2018, 52:23-27. DOI:10.1016/j.clinimag.2018.02.016.
[25] Parkes LM, Rashid W, Chard DT, et al. Normal cerebral perfusion measurements using arterial spin labeling:reproducibility, stability, and age and gender effects[J]. Magn Reson Med, 2004, 51(4):736-743. DOI:10.1002/mrm.20023.
[26] Di Napoli A, Cheng SF, Gregson J, et al. Arterial Spin Labeling MRI in Carotid Stenosis:Arterial Transit Artifacts May Predict Symptoms[J]. Radiology, 2020, 297(3):652-660. DOI:10.1148/radiol.2020200225.
[27] Yamamoto T, Kinoshita K, Kosaka N, et al. Monitoring of extra-axial brain tumor response to radiotherapy using pseudo-continuous arterial spin labeling images:preliminary results[J]. Magn Reson Imaging, 2013, 31(8):1271-1277. DOI:10.1016/j.mri.2013.04.011.