AbstractObjective To investigate the value of serum miR-143 level combined with MRI in predicting the early response to concurrent chemoradiotherapy (CCRT) in cervical cancer. Methods A total of 85 patients with pathologically confirmed cervical cancer underwent conventional MRI, intravoxel incoherent motion diffusion-weighted imaging (IVIM-DWI), and dynamic contrast-enhanced MRI (DCE-MRI) before CCRT. The biopsy tissues and serum samples were collected. The differential expression of miRNA in the biopsy tissues was determined by microarray chip. The expression level of miR-143 in the serum samples was analyzed by qRT-PCR. All patients were divided into the non-residual and residual tumor groups according to post-treatment MRI. Pre-treatment clinical factors, MRI parameters and miR-143 between two groups were statistically analyzed by the univariate and multivariate analyses. The optimal thresholds and predictive performance for post-treatment incidence of residual tumors were estimated by drawing the ROC curve. Results At one month after CCRT, there were 52 patients in the non-residual tumor group and 33 patients in the residual tumor group. In the residual tumor group, pre-treatment FIGO staging, apparent diffusion coefficient (ADC), D and Ve were significantly higher (all P<0.05), whereas Ktrans value was significantly lower (P<0.001) when compared to those in the non-residual tumor group. The miRNA array analysis showed that there were 16 miRNAs with differential expression levels between two groups (all P<0.05). Among them, the increase of miR-143 was the most significant in the residual tumor group. Compared with the residual tumor group, the expression level of serum miR-143 was significantly down-regulated in the non-residual tumor group (P=0.002). Compared with the SiHa cells, the expression level of miR-143 in the SiHa-R cells was significantly up-regulated (P<0.05). Multivariate analysis showed that only miR-143, D, Ktrans and Ve were the independent prognostic factors. The combination of multi-parametric MRI and miR-143 exhibited the highest predictive performance (AUC=0.975), with a sensitivity of 84.8% and a specificity of 96.2%. Conclusion The combination of multi-parametric MRI with miR-143 further improves the predictive performance for residual tumors after CCRT, which contributes to the personalized treatment of cervical cancer.
Corresponding Authors:
Wang Meiyun,Email:marian9999@163.com
Cite this article:
Chen Cuiyun,Wang Meiyun,Zhu Qingyao et al. The value of circulating miR-143 level in predicting early response to concurrent chemoradiotherapy in cervical cancer patients[J]. Chinese Journal of Radiation Oncology, 2021, 30(9): 910-916.
Chen Cuiyun,Wang Meiyun,Zhu Qingyao et al. The value of circulating miR-143 level in predicting early response to concurrent chemoradiotherapy in cervical cancer patients[J]. Chinese Journal of Radiation Oncology, 2021, 30(9): 910-916.
[1] Liu YM, Ni LQ, Wang SS, et al.Outcome and prognostic factors in cervical cancer patients treated with surgery and concurrent chemoradiotherapy:a retrospective study[J]. World J Surg Oncol, 2018, 16(1):18.DOI:10.1186/s12957-017-1307-0. [2] 李靖,金荣,张宏凯,等.体素内不相干运动成像评估局部晚期宫颈癌同步放化疗疗效的价值[J]. 中华放射学杂志,2018, 52(3):192-198.DOI:10.3760/cma.j.issn.1005-1201.2018.03.007. Li J, Qu JR, Zhang HK, et al.Value of introvoxel incoherent motion imaging on evaluating concurrent chemoradiotherapy responsein patients with advance duter inecervix cancer[J]. Chin J Radiol, 2018, 52(3):192-198.DOI:10.3760/cma.j.issn.1005-1201.2018.03.007. [3] 狄文,余敏华.局部晚期宫颈癌术前治疗方法选择[J]. 中国实用妇科与产科杂志,2018, 34(11):1190-1193.DOI:10.19538/j.fk2018110102. Di W, Yu MH.Preoperative treatments for locally advanced cervical cancer[J]. Chin J Pract Gynecol Obstetr, 2018, 34(11):1190-1193.DOI:10.19538/j.fk2018110102. [4] Lalchandani UR, Sahai V, Hersberger K, et al.A radiologist's guide to response evaluation criteria in solid tumors[J]. Curr Probl Diagn Radiol, 2019, 48(6):576-585.DOI:10.1067/j.cpradiol.2018.07.016. [5] Latifkar A, Cerione RA, Antonyak MA.Probing the mechanisms of extracellular vesicle biogenesis and function in cancer[J]. Biochem Soc Trans, 2018, 46(5):1137-1146.DOI:10.1042/BST20180523. [6] Farzanehpour M, Mozhgani SH, Jalilvand S, et al.Serum and tissue miRNAs:potential biomarkers for the diagnosis of cervical cancer[J]. Virol J, 2019, 16(1):116.DOI:10.1186/s12985-019-1220-y. [7] 郑磊,李博.细胞外囊泡生物标志物研究现状与筛选策略[J]. 中华检验医学杂志,2018, 41(11):812-816.DOI:10.3760/cma.j.issn.1009-9158.2018.11.005 Zheng L, Li B.Research progress and screening strategies for biomarkers from extracellular vesicles in human diseases[J]. Chin J Lab Med, 2018, 41(11):812-816.DOI:10.3760/cma.j.issn.1009-9158.2018.11.005 [8] Hirokazu W, Morihito O, Yasushi K, et al.New response evaluation criteria in solid tumours-revised RECIST guideline (version 1.1)[J]. Gan To Kagaku Ryoho, 2009, 36(13):2495-2501.DOI:10.3892/ol.2021.12817. [9] Zhang H, Zhou Y, Li J, et al.The value of DWI in predicting the response to synchronous radiochemotherapy for advanced cervical carcinoma:comparison among three mathematical models[J]. Cancer Imag, 2020, 20(1):8.DOI:10.1186/s40644-019-0285-6. [10] Sanguineti G, Marzi S, Marucci L, et al.Prediction of treatment response of cervical nodes using IVIM-DWI[J]. Int J Radiat Oncol, 2016, 96(2):S69-S70.DOI:10.1016/j.ejrad.2014.02.013. [11] Wu Q, Wang Y, Shi L, et al.Intravoxel incoherent motion diffusion-weighted magnetic resonance imaging of cervical cancer with different b-values[J]. J Comput Assist Tomogr, 2017, 41(4):592-598.DOI:10.1097/RCT.0000000000000569. [12] Huang JW, Song JC, Chen T, et al.Making the invisible visible:improving detectability of MRI-invisible residual cervical cancer after conisation by DCE-MRI[J]. Clin Radiol, 2019, 74(2):166.e15-166.e21.DOI:10.1016/j.crad.2018.10.013. [13] 冯煜森,丁莹莹,张娅,等.动态增强磁共振成像在宫颈癌新辅助化疗疗效评估中的价值[J]. 实用放射学杂志,2018, 34(5):725-729.DOI:10.3969/j.issn.1002-1671.2018.05.020. Feng YS, Ding YY, Zhang Y, et al.Dynamic contrast-enhanced MRI predicts the neoadjuvant chemotherapy short-term effect in patients with cervical cancer[J]. J Pract Radiol, 2018, 34(5):725-729.DOI:10.3969/j.issn.1002-1671.2018.05.020. [14] Kim JH, Kim CK, Park BK, et al.Dynamic contrast-enhanced 3-T MR imaging in cervical cancer before and after concurrent chemoradiotherapy[J]. Eur Radiol, 2012, 22(11):2533-2539.DOI:10.1007/s00330-012-2504-4. [15] Yang W, Qiang JW, Tian HP, et al.Multi-parametric MRI in cervical cancer:early prediction of response to concurrent chemoradiotherapy in combination with clinical prognostic factors[J]. Eur Radiol, 2018, 28(1):437-445.DOI:10.1007/s00330-017-4989-3. [16] Wang JY, Chen LJ.The role of miRNAs in the invasion and metastasis of cervical cancer[J]. Biosci Rep, 2019, 39(3):BSR20181377.DOI:10.1042/BSR20181377. [17] S hukla V, Varghese VK, Kabekkodu SP, et al.Enumeration of deregulated miRNAs in liquid and tissue biopsies of cervical cancer[J]. Gynecol Oncol, 2019, 155(1):135-143.DOI:10.1016/j.ygyno.2019.08.012. [18] Tornesello ml, Faraonio R, Buonaguro L, et al.The role of microRNAs, long non-coding RNAs, and circular RNAs in cervical cancer[J]. Front Oncol, 2020, 10:150.DOI:10.3389/fonc.2020.00150. [19] Miao J, Regenstein JM, Xu D, et al.The roles of microRNA in human cervical cancer[J]. Arch Biochem Biophys, 2020, 690:108480.DOI:10.2174/2211536610666210604123534. [20] 宋伟国,王娟,肖卫华,等.microRNA在子宫颈癌发病机制中的作用[J]. 医学分子生物学杂志,2018, 15(4):236-241.DOI:10.3870/j.issn.1672-8009.2018.04.010. Song WG, Wang J, Xiao WH, et al.Roles of microRNA in the pathogenesis of cervical cancer[J]. J Med Molecul Biol, 2018, 15(4):236-241.DOI:10.3870/j.issn.1672-8009.2018.04.010. [21] Liu MZ, Jia JY, Wang XJ, et al.Long non-coding RNA HOTAIR promotes cervical cancer progression through regulating BCL2 via targeting miR-143-3p[J]. Cancer Biol Ther, 2018, 19(5):391-399.DOI:10.1080/15384047.2018.1423921. [22] Gomes SE, SimōesAE, Pereira DM, et al.miR-143 or miR-145 overexpression increases cetuximab-mediated antibody-dependent cellular cytotoxicity in human colon cancer cells[J]. Oncotarget, 2016, 7(8):9368-9387.DOI:10.18632/oncotarget.7010.