AbstractObjective To evaluate the application value of robost optimization of brachytherapy for cervical cancer. Methods Twenty patients who completed radical treatment were recruited in this study. The dose volume histogram (DVH) parameters were statistically compared between the conventional and robust optimization plans, and the robustness between the conventional and robust optimization plans was evaluated using DVH and DVH bands. The robust optimization method utilized the worst dose distribution to consider the dose in the presence of uncertainties. In each optimization iteration, the dose distributin when the radioactive source shifted along the X, Y, and Z directions (±2 mm), and the dose distribution when the radioactive source was not shifted were calculated. The worst dose distribution for each voxel was the lowest dose in the target and the highest dose outside the target under all circumstances. The iterative objective function was calculated by the worst dose distribution. Results In the scenario of no shifting of radioactive source position, the mean value of robust optimization was significantly lower and that of V150% was significantly higher than those of conventional optimization (both P<0.05). When considering the shifting of radioactive source position, the worst dosimetric parameters of multiple dose distributions were statistically compared. The mean HR-CTV D100% values did not significantly differ between the robust and conventional optimization plans, whereas the mean D90% value (range:0.02-0.03Gy) of robust optimization was significantly higher than that of conventional optimization (P<0.05). Robust optimization increased the D2cm3 of the bladder and small intestine, and the rectum dose was increased with the shifting of the radioactive source position in the robust optimization. The DVH bands did not significantly differ between the conventional and robust optimization plans for all patients. Conclusions Robust optimization based on the worst dose distribution fails to significantly improve the robustness of brachytherapy for cervical cancer. Alternative methods are required to minimize the dosimetric effect of uncertainties in brachytherapy.
Fund:Key research and development project of chengdu science and technology(2019-YF09-00095-SN)
Corresponding Authors:
Li Jie, Email:jie.li@yeah.net
Cite this article:
Wang Xianliang,Wang Pei,Kang Shengwei et al. Study of robust optimization in brachytherapy[J]. Chinese Journal of Radiation Oncology, 2021, 30(4): 387-391.
Wang Xianliang,Wang Pei,Kang Shengwei et al. Study of robust optimization in brachytherapy[J]. Chinese Journal of Radiation Oncology, 2021, 30(4): 387-391.
[1] Dahiya M. Brachytherapy:a review[J]. J Crit Rev, 2016, 3(2):6-10. [2] Kirisits C, Rivard MJ, Baltas D, et al. Review of clinical brachytherapy uncertainties:analysis guidelines of GEC-ESTRO and the AAPM[J]. Radiother Oncol, 2014, 110(1):199-212. DOI:10.1016/j.radonc.2013.11.002. [3] Panettieri V, Smith RL, Mason NJ, et al. Comparison of IPSA and HIPO inverse planning optimization algorithms for prostate HDR brachytherapy[J]. J Appl Clin Med Phys, 2014, 15(6):5055. DOI:10.1120/jacmp.v15i6.5055. [4] Unkelbach J, Bortfeld T, Martin BC, et al. Reducing the sensitivity of IMPT treatment plans to setup errors and range uncertainties via probabilistic treatment planning[J]. Med Phys, 2009, 36(1):149-163. DOI:10.1118/1.3021139. [5] Inaniwa T, Kanematsu N, Furukawa T, et al. A robust algorithm of intensity modulated proton therapy for critical tissue sparing and target coverage[J]. Phys Med Biol, 2011, 56(15):4749-4770. DOI:10.1088/0031-9155/56/15/008. [6] Inaniwa T, Kanematsu N, Furukawa T, et al. Optimization algorithm for overlapping-field plans of scanned ion beam therapy with reduced sensitivity to range and setup uncertainties[J]. Phys Med Biol, 2011, 56(6):1653-1669. DOI:10.1088/0031-9155/56/6/009. [7] Wei L, Xiaodong Z, Yupeng L, et al. Robust optimization of intensity modulated proton therapy[J]. Med Phys, 2012, 39(2):1079-1091. DOI:10.1118/1.3679340. [8] Li Y, Niemela P, Liao L, et al. Selective robust optimization:A new intensity-modulated proton therapy optimization strategy[J]. Med Phys, 2015, 42(8):4840-4847. DOI:10.1118/1.4923171. [9] Fredriksson A, Forsgren A,Hârdemark B. Minimax optimization for handling range and setup uncertainties in proton therapy[J]. Med Phys, 2011, 38(3):1672-1684. DOI:10.1118/1.3556559. [10] Pflugfelder D, Wilkens JJ, Oelfke U. Worst case optimization:a method to account for uncertainties in the optimization of intensity modulated proton therapy[J]. Phys Med Biol, 2008, 53(6):1689-1700. DOI:10.1088/0031-9155/53/6/013. [11] Balvert M, Gorissen BL, den Hertog D, et al. Dwell time modulation restrictions do not necessarily improve treatment plan quality for prostate HDR brachytherapy[J]. Phys Med Biol, 2015, 60(2):537-548. DOI:10.1088/0031-9155/60/2/537. [12] 王先良, 王培, 李厨荣, 等. 三维后装中一种逆向剂量优化算法[J]. 中华放射肿瘤学杂志, 2020, 29(8):676-681. DOI:10.3760/cma.j.cn113030-20180815-00413. Wang XL, Wang P, Li CR, et al. An inverse dose optimization algorithm for three-dimensional brachytherapy[J]. Chin J Radiat Oncol, 2020, 29(8):676-681. DOI:10.3760/cma.j.cn113030-20180815-00413. [13] Fredriksson A. A characterization of robust radiation therapy treatment planning methods-from expected value to worst case optimization[J]. Med Phys, 2012, 39(8):5169-5181. DOI:10.1118/1.4737113. [14] A European study on MRI-guided brachytherapy in locally advanced cervical cancer[EB/OL][2019-07-02]. https://www.embracestudy.dk/. [15] Pötter R, Haie-Meder C, Van Limbergen E, et al. Recommendations from gynaecological (GYN) GEC ESTRO working group (Ⅱ):concepts and terms in 3D image-based treatment planning in cervix cancer brachytherapy-3D dose volume parameters and aspects of 3D image-based anatomy, radiation physics, radiobiology[J]. Radiother Oncol, 2006, 78(1):67-77. DOI:10.1016/j.radonc.2005.11.014. [16] Trofimov A, Unkelbach J, DeLaney TF, et al. Visualization of a variety of possible dosimetric outcomes in radiation therapy using dose-volume histogram bands[J]. Pract Radiat Oncol, 2012, 2(3):164-171. DOI:10.1016/j.prro.2011.08.001. [17] Smith RL, Panettieri V, Lancaster C, et al. The influence of the dwell time deviation constraint (DTDC) parameter on dosimetry with IPSA optimisation for HDR prostate brachytherapy[J]. Australas Phys Eng Sci Med, 2015, 38(1):55-61. DOI:10.1007/s13246-014-0317-2. [18] Kubo HD, Glasgow GP, Pethel TD, et al. High dose-rate brachytherapy treatment delivery:report of the AAPM radiation therapy committee task group No. 59[J]. Med Phys, 1998, 25(4):375-403. DOI:10.1118/1.598232.