[an error occurred while processing this directive] | [an error occurred while processing this directive]
Research on robust optimization method of intensity-modulated proton therapy
Han Rongcheng1,2, Pu Yuehu3,4, Kong Haiyun1, Li Xiufang3, Wu Chao1,2
1Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China; 2University of Chinese Academy of Sciences, Beijing 100049, China; 3Shanghai APACTRON Particle Equipment Co., Ltd, Shanghai 201800, China; 4Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China
AbstractObjective To propose a new robust optimization method, known as modified worst case method, was proposed, which can enable users to control the trade-off between nominal plan quality and plan robustness. Methods In each iteration of the plan optimization process, the dose value of each voxel in nine scenarios, which corresponded to a nominal scenario and eight perturbed scenarios with range or set-up uncertainties, were calculated and the maximum of deviations of each scenario voxel dose from that of the nominal scenario was included as an additive robust optimization term in the Objective function. A weighting factor probust was used to this robust optimization term to balance the nominal plan quality and plan robustness. Results The robust optimization methods were implemented and compared in an in-house developed robust optimization module. When probust=0.8, compared with conventional optimization, the ΔD95% of CTV was reduced from 9.8 Gy to 7.6 Gy. When probust was reduced from 1 to 0, ΔD95% was increased from 7.0 Gy to 9.8 Gy, whereas the D95% and Dmax of CTV, and the D5% and Dmax of organs at risk (OAR) in the nominal scenario were reduced. Conclusions The proposed modified worst case method can effectively improve the robustness of the plan to the range and set-up uncertainties. Besides, the weighting factor probust in this method can be adopted to control the trade-off between nominal plan quality and plan robustness.
Corresponding Authors:
Pu Yuehu, Email:puyuehu@sinap.ac.cn
Cite this article:
Han Rongcheng,Pu Yuehu,Kong Haiyun et al. Research on robust optimization method of intensity-modulated proton therapy[J]. Chinese Journal of Radiation Oncology, 2020, 29(10): 888-893.
Han Rongcheng,Pu Yuehu,Kong Haiyun et al. Research on robust optimization method of intensity-modulated proton therapy[J]. Chinese Journal of Radiation Oncology, 2020, 29(10): 888-893.
[1] Lomax AJ. Intensity modulation methods for proton radiotherapy[J]. Phys Med Biol, 1999, 44(1):185-205. DOI:10.1088/0031-9155/44/1/014. [2] Lomax AJ, Boehringer T, Coray A, et al. Intensity modulated proton therapy:a clinical example[J]. Med Phys, 2001,28(3):317-324. DOI:10.1118/1.1350587. [3] Paganetti H. Proton beam therapy[M]. London:Physics World Discovery, 2017:25-29. DOI:10.1088/978-0-7503-1370-4. [4] Schneider U, Pedroni E, Lomax A. The calibration of CT Hounsfield units for radiotherapy treatment planning[J]. Phys Med Biol, 1996, 41(1):111-124. DOI:10.1088/0031-9155/41/1/009. [5] Schaffner B, Pedroni E. The precision of proton range calculations in proton radiotherapy treatment planning:experimental verification of the relation between CT-HU and proton stopping power[J]. Phys Med Biol, 1998, 43(6):1579-1592. DOI:10.1088/0031-9155/43/6/016. [6] International Commission on Radiation Units. Measurements, prescribing, recording, and reporting proton-beam therapy. ICRU Report 78[R]. Bethesda:ICRU, 2007:71. DOI:10.1667/RRXX10.1. [7] Maleike D, Unkelbach J, Oelfke U. Simulation and visualization of dose uncertainties due to interfractional organ motion[J]. Phys Med Biol, 2006, 51(9):2237-2252. DOI:10.1088/0031-9155/51/9/009. [8] Unkelbach J, Paganetti H. Robust proton treatment planning:physical and biological optimization[J]. Semin Radiat Oncol, 2018, 28(2):88-96. DOI:10.1016/j.semradonc.2017.11.005. [9] Unkelbach J, Chan TC, Bortfeld T, et al. Accounting for range uncertainties in the optimization of intensity modulated proton therapy[J]. Phys Med Biol, 2007, 52(10):2755-2773. DOI:10.1088/0031-9155/52/10/009. [10] Unkelbach J, Bortfeld T, Martin B, et al. Reducing the sensitivity of IMPT treatment plans to setup errors and range uncertainties via probabilistic treatment planning[J]. Med Phys, 2008, 36(1):149-163. DOI:10.1118/1.3021139. [11] Pflugfelder D, Wilkens JJ, Oelfke U, et al. Worst case optimization:a method to account for uncertainties in the optimization of intensity modulated proton therapy[J]. Phys Med Biol, 2008, 53(6):1689-1700. DOI:10.1088/0031-9155/53/6/013. [12] Liu W, Zhang X, Li Y, et al. Robust optimization of intensity modulated proton therapy[J]. Med Phys, 2012, 39(2):1079-1091. DOI:10.1118/1.3679340. [13] Fredriksson A, Forsgren A, Hardemark B, et al. Minimax optimization for handling range and setup uncertainties in proton therapy[J]. Med Phys, 2011, 38(3):1672-1684. DOI:10.1118/1.3556559. [14] Chen W, Unkelbach J, Trofimov A, et al. Including robustness in multi-criteria optimization for intensity-modulated proton therapy[J]. Phys Med Biol, 2012, 57(3):591-608. DOI:10.1088/0031-9155/57/3/591. [15] An Y, Liang J, Schild SE, et al. Robust treatment planning with conditional value at risk chance constraints in intensity-modulated proton therapy[J]. Medical Physics, 2017, 44(1):28-36. DOI:10.1002/mp.12001. [16] Shan J, Sio TT, Liu C, et al. A novel and individualized robust optimization method using normalized dose interval volume constraints (NDIVC) for intensity-modulated proton radiotherapy[J]. Med Phys, 2019, 46(1):382-393. DOI:10.1002/mp.13276. [17] Ma J, Tseung HS, Herman MG, et al. A robust intensity modulated proton therapy optimizer based on Monte Carlo dose calculation[J]. Med Phys, 2018, 45(9):4045-4054. DOI:10.1002/mp.13276. [18] Inaniwa T, Kanematsu N, Furukawa T, et al. A robust algorithm of intensity modulated proton therapy for critical tissue sparing and target coverage[J]. Phys Med Biol, 2011, 56(15):4749-4770. DOI:10.1088/0031-9155/56/15/008. [19] Ezzell GA, Burmeister J, Dogan N, et al. IMRT commissioning:Multiple institution planning and dosimetry comparisons, a report from AAPM Task Group 119[J]. Med Phys, 2009, 36(11):5359-5373. DOI:10.1118/1.3238104. [20] Byrd RH, Nocedal J, Schnabel RB, et al. Representations of quasi-Newton matrices and their use in limited memory methods[J]. Mathematical Programming, 1994, 63(2):129-156. DOI:10.1007/BF01582063. [21] Han R, Li Y, Pu Y, et al. Collection efficiency of a monitor parallel plate ionization chamber for pencil beam scanning proton therapy[J]. Nucl Sci Tech, 2020, 31(2):1-10. DOI:10.1007/s41365-020-0722-z. [22] Hong L, Goitein M, Bucciolini M, et al. A pencil beam algorithm for proton dose calculations[J]. Phys Med Biol, 1996, 41(8):1305-1330. DOI:10.1088/0031-9155/41/8/005. [23] Fujimoto R, Kurihara T, Nagamine Y, et al. GPU-based fast pencil beam algorithm for proton therapy[J]. Phys Med Biol, 2011, 56(5):1319-1328. DOI:10.1088/0031-9155/56/5/006.