[an error occurred while processing this directive] | [an error occurred while processing this directive]
Planning target volume-Is it still suitable for intensity modulated proton therapy for lung cancer?
Shang Haijiao1, Pu Yuehu1, Chen Zhiling1, Shen Liren1, He Xiaodong2, Huang Xiaoyan3, Wang Yuenan4
1Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China; 2Department of Radiation oncology, Ruijin Hospital Affiliated to the Shanghai Jiao Tong University, Shanghai 200025, China; 3Sun Yat-sen University Cancer Center, Cancer Hospital of Sun Yat-sen University, Guangzhou 510060, China; 4Department of Radiation Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen 518116, China
AbstractObjective To demonstrate the concept of planning target volume (PTV) is not suitable for intensity proton therapy (IMPT) in lung cancer, plan differences were compared based on the concept of PTV and Internal target volume (ITV), aiming to provide clinical reference.Methods Six patients were retrospectively selected and approved by the local ethics committee. Each of the six patients received two IMPT plans based on a synchronous accelerator model,developed by SINAP team (Shanghai Institute of Applied Physics, China Academy Science University) and commercial treatment system:one with the PTV-based robust IMPT (PTV-IMPT) plan and the other with ITV-based robust IMPT (ITV-IMPT) plan. Three beams were set in all plans, and the final dose was calculated using Monte Carlo dose algorithm. The plan quality androbustnessof PTV-IMPT and ITV-IMPT plans were evaluatedquantitatively. Results Compared to the PTV-IMPT plan, ITV-IMPT plan showed better target conformity index (conformability index:0.58 vs.0.43),better homogeneity index (homogeneity index:0.96 vs.0.92), lower V5Gy innormal lung tissue(13.1% vs.13.5%) and maximum dose in spinal cord (8.9 Gy vs. 9.5 Gy) as well as plan monitor unit (MU:338 vs. 401) . In addition, ITV-IMPT plan showed more robust in target coverage (0.003-0.032 vs. 0.02-0.28), andnormal lung tissue was also found a bit robust in the ITV-IMPT plan(0.06-0.11,0.07-0.13). Conclusions Compared with the PTV-IMPT plan, ITV-IMPT plan has the advantages of high planning quality, well robustness and better tumor motion mitigation. Therefore, ITV concept is recommended to be applied in the IMPT plan for lung cancer.
Fund:National Key Research of Ministry of Science and Technology of China (2016YFC0105400);Shenzhen City Sanming Project (SZSM201812062)
Corresponding Authors:
Pu Yuehu, Email:Puyuehu@sinap.ac.cn
Cite this article:
Shang Haijiao,Pu Yuehu,Chen Zhiling et al. Planning target volume-Is it still suitable for intensity modulated proton therapy for lung cancer?[J]. Chinese Journal of Radiation Oncology, 2020, 29(7): 540-545.
Shang Haijiao,Pu Yuehu,Chen Zhiling et al. Planning target volume-Is it still suitable for intensity modulated proton therapy for lung cancer?[J]. Chinese Journal of Radiation Oncology, 2020, 29(7): 540-545.
[1] Bert C, Durante M. Motion in radiotherapy:particle therapy[J]. Phys Med Biol, 2011, 56(16):113-144. DOI:10.1088/0031-9155/56/16/R01. [2] Mohan R, Das IJ, Ling CC. Empowering intensity modulated proton therapy through physics and technology:an overview[J]. Int J Radiat Oncol Biol Phys, 2017, 99(2):304-316. DOI:10.1016/j.ijrobp.2017.05.005. [3] International Commission on Radiation Units and Measurements. Comments on ICRU report no. 49:stopping powers and ranges for protons and alpha particles[R]. Bethesda:ICRU, 1993. DOI:10.2307/3580097. [4] International Commission on Radiation Units and Measurements. ICRU Report 50:Prescribing, recording, and reporting photon beam therapy[R]. Bethesda:ICRU, 1999. DOI:10.1118/1.597396. [5] Gill SK, Reddy K, Campbell N, et al. Determination of optimal PTV margin for patients receiving CBCT-guided prostate IMRT:comparative analysis based on CBCT dose calculation with four different margins[J]. J Appl Clin Med Phys, 2015, 16(6):252-262. DOI:10.1120/jacmp.v16i6.5691. [6] Lyons CA, King RB, Osman SOS, et al. A novel CBCT-based method for derivation of CTV-PTV margins for prostate and pelvic lymph nodes treated with stereotactic ablative radiotherapy[J]. Radiat Oncol, 2017, 12(1):124. DOI:10.1186/s13014-017-0859-z. [7] Knopf AC, Boye D, Lomax A, et al. Adequate margin definition for scanned particle therapy in the incidence of intrafractional motion[J]. Phys Med Biol, 2013, 58(17):6079-6094. DOI:10.1088/0031-9155/58/17/6079. [8] Chang JY, Zhang X, Knopf A, et al. Consensus guidelines for implementing pencil-beam scanning proton therapy for thoracic malignancies on behalf of the PTCOG thoracic and lymphoma subcommittee[J]. Int J Radiat Oncol Biol Phys, 2017, 99(1):41-50. DOI:10.1016/j.ijrobp.2017.05.014. [9] 贾亚军, 李永江, 张潇, 等. 质子治疗中点扫描照射技术的仿真模拟[J]. 核技术, 2016, 39(9):90202. DOI:10.11889/j.0253-3219.2016.hjs.39.090202. Jia YJ Li YJ, Zhang X, et al. Simulation of point scanning irradiation technology in proton therapy Simulation[J]. Nucl Technol, 2016, 39(9):90202. DOI:10.11889/j.0253-3219.2016.hjs.39.090202. [10] Engdahl S. Validation of ion therapy dose calculation algorithms by Monte Carlo[D]. Stockholm:Physics of Medical Imaging Department of Physics KTH, 2015. [11] Yang YH, Zhang MZ, Li DM. Simulation study of slow extraction for the Shanghai Advanced Proton Therapy facility[J]. Nucl Sci Tech, 2017, 28(9):120. DOI:10.1007/s41365-017-0273-0. [12] Bradley J, Graham MV, Winter K, et al. Toxicity and outcome results of RTOG 9311:a phase Ⅰ-Ⅱ dose escalation study using three-dimensional conformal radiotherapy in patients with inoperable non-small cell lung carcinoma[J]. Int J Radiat Oncol Biol Phys, 2005, 61(2):318-328. DOI:10.1016/j.ijrobp.2004.06.260. [13] Paganetti H. Range uncertainties in proton therapy and the role of Monte Carlo simulations[J]. Phys Med Biol, 2012, 57(11):R99-R117. DOI:10.1088/0031-9155/57/11/R99. [14] Fredriksson A, Forsgren A,Hårdemark B. Minimax optimization for handling range and setup uncertainties in proton therapy[J]. Med Phys, 2011, 38(3):1672-1684. DOI:10.1118/1.3556559. [15] Shang HJ, Pu YH, Wang W, et al. Evaluation of plan quality and robustness of IMPT and helical IMRT for cervical cancer[J]. Radiat Oncol, 2020, 15(1):1-11. DOI:10.1186/s13014-020-1483-x. [16] Lujan AE, Larsen EW, Balter JM, et al. A method for incorporating organ motion due to breathing into 3D dose calculations[J]. Med Phys, 1999, 26(5):715-720. DOI:10.1118/1.598577. [17] Huang L, Park K, Boike T, et al. A study on the dosimetric accuracy of treatment planning for stereotactic body radiation therapy of lung cancer using average and maximum intensity projection images[J]. Radiother Oncol, 2010;96(1):48-54. DOI:10.1016/j.radonc.2010.04.003. [18] Durante M, Paganetti H. Nuclear physics in particle therapy:a review[J]. Rep Prog Phys, 2016, 79(9):096702. DOI:10.1088/0034-4885/79/9/096702. [19] Liu W, Frank SJ, Li X, et al. Effectiveness of robust optimization in intensity-modulated proton therapy planning for head and neck cancers[J]. Med Phys, 2013, 40(5):051711-051718. DOI:10.1118/1.4801899. [20] Inoue T, Widder J, van Dijk LV, et al. Limited impact of setup and range uncertainties, breathing motion, and interplay effects in robustly optimized intensity modulated proton therapy for stage Ⅲ non-small cell lung cancer[J]. Int J Radiat Oncol Biol Phys, 2016, 96(3):661-669. DOI:10.1016/j.ijrobp.2016.06.2454 [21] Knopf AC, Hong TS, Lomax A. Scanned proton radiotherapy for mobile targets—the effectiveness of re-scanning in the context of different treatment planning approaches and for different motion characteristics[J]. Phys Med Biol, 2011, 56(22):7257. DOI:10.1088/0031-9155/56/22/016. [22] Seco J, Robertson D, Trofimov A, et al. Breathing interplay effects during proton beam scanning:simulation and statistical analysis[J]. Phys Med Biol, 2009, 54(14):N283. DOI:10.1088/0031-9155/54/14/N01.