AbstractObjective To compare dosimetric and radiobiological parameters between automatic and manual uARC plans in the treatment of esophageal cancer patients, aiming to provide reference for clinical application. Methods High-quality uARC plans of 100 patients with esophageal cancer were selected, and the mean values of the dosimetric parameters in the target area and organs at risk (OAR) were counted, and the goal table of uRT-TPOIS intelligent plan was established. Automatic and manual uARC plans were generated with UIH (United Imaging) treatment planning system (TPS) for 21 esophageal cancer patients. The differences in mean dose (Dmean), approximate minimum (D98%) and maximum (D2%) dose of planning target volume (PTV), homogeneity index (HI) and conformity index (CI), dose of OAR, mean planning time, monitor unit (MU), tumor control probability (TCP) and normal tissue complication probability (NTCP) were compared between automatic and manual uARC plans. Normally distributed data between two groups were compared by paired t-test, and non-normally distributed data were assessed by nonparametric Wilcoxon test. Results The D98% (PTV60 Gy: P<0.001, PTV54 Gy: P=0.001) , CI (PTV60 Gy: P<0.001, PTV54 Gy: P=0.002) and target volume of area covered by prescription dose (V54 Gy: P<0.001) of the automatic uARC plans were better than those of manual uARC plans (all P<0.05). There was no significant difference in Dmean or HI between the two plans [PTV54 Gy (59.32±1.87) Gy vs. (59.13±1.64) Gy, (0.19±0.02) vs. (0.18±0.02), all P>0.05]. The Dmean and Dmax of spinal cord of the automatic plan were better than those of the manual plan [(13.22±4.27) Gy vs. (13.75±4.44) Gy, P=0.020 and (36.99±1.67) Gy vs. (38.14±1.31) Gy, P=0.011]. There was no significant difference in the mean dose of V20 Gy of the lung between two plans (P>0.05), whereas the mean doses of V5 Gy and V10 Gy of the lung of the manual plan were less than those of the automatic plan ( both P<0. 001). Automatic uARC plan had a significantly shorter mean planning time than manual uARC plan [(11.79±1.71) min vs. (53.36±8.23) min, P<0.001]. MU did not significantly differ between two plans [(762.84±74.83) MU vs. (767.41±80.63) MU, P>0.05]. The TCP of the automatic plan was higher than that of the manual plan (PTV60 Gy 89.15%±0.49% vs. 86.75%±6.46%, P=0.004 and PTV54 Gy 79.79%±3.48% vs. 77.51%±5.04%, P=0.006). However, manual plan had a lower NTCP of the lung than automatic uARC plan (0.46%±0.40% vs. 0.35%±0.32%, P<0.001). There was no significant difference in NTCP of heart and spinal cord between two plans (all P>0.05). Conclusion It is feasible to generate automatic uARC plan with uRT-TPOIS TPS for esophageal cancer patients, which can increase the target CI and shorten the plan design time.
Corresponding Authors:
Han Qian, Email: hq28022009@163.com
Cite this article:
Liang Hengpo,Tao Jinzhu,Han Qian. Feasibility study of automatic uARC planning for esophageal cancer using simultaneous integrated boost radiotherapy[J]. Chinese Journal of Radiation Oncology, 2023, 32(7): 612-619.
Liang Hengpo,Tao Jinzhu,Han Qian. Feasibility study of automatic uARC planning for esophageal cancer using simultaneous integrated boost radiotherapy[J]. Chinese Journal of Radiation Oncology, 2023, 32(7): 612-619.
[1] Netherton TJ, Cardenas CE, Rhee DJ, et al. The emergence of artificial intelligence within radiation oncology treatment planning[J]. Oncology, 2021,99(2):124-134. DOI: 10.1159/000512172. [2] Tinoco M, Waga E, Tran K, et al. RapidPlan development of VMAT plans for cervical cancer patients in low- and middle-income countries[J]. Med Dosim, 2020,45(2):172-178. DOI: 10.1016/j.meddos.2019.10.002. [3] Smith A, Granatowicz A, Stoltenberg C, et al.Can the student outperform the master? A plan comparison between pinnacle auto-planning and eclipse knowledge-based RapidPlan following a prostate-bed plan competition[J]. Technol Cancer Res Treat, 2019,18:1533033819851763. DOI: 10.1177/153303381985 1763. [4] 张麒麟, 张书铭, 王明清, 等. 放疗自动计划研究进展[J].中华放射肿瘤学杂志,2021,30(3):316-320. DOI: 10.3760/cma.j.cn113030-20191202-00497. Zhang QL, Zhang SM, Wang MQ, et al. Research progress on automatic treatment planning methods for radiotherapy[J].Chin J Radiat Oncol,2021,30(3):316-320. DOI: 10.3760/cma.j.cn113030-20191202-00497. [5] 王翰林, 刘嘉城, 姚凯宁, 等. 基于优化参数树搜索算法的直肠癌调强放疗自动计划[J].中华放射医学与防护杂志,2021,41(1):66-73. DOI: 10.3760/cma.j.issn.0254-5098.2021.01.014. Wang HL, Liu JC, Yao KN, et al. Automatic planning of IMRT for rectum cancer based on optimization parameters tree search algorithm[J].Chin J Radiol Med Prot,2021,41(1):66-73. DOI: 10.3760/cma.j.issn.0254-5098.2021.01.014. [6] 吴骏翔, 康盛伟, 王培, 等. 宫颈癌术后放疗中自动计划与人工计划的剂量学比较[J]. 中华放射医学与防护杂志,2018,38 (1): 26-31. DOI: 10.3760/cma.j.issn.0254-5098.2018.01.006. Wu JX, Kang SW, Wang P, et al. Dosimetric comparison between automated and manual volumetric modulated arc therapy planning for postoperative cervical cancer[J]. Chin J Radiol Med Prot, 2018,38(1):26-31. DOI:10.3760/cma.j.issn.0254-5098.2018.01.006. [7] 张惠玲, 李鑫, 吴小良, 等. 分段弧和全弧旋转容积调强放疗治疗胸中段食管癌的剂量学比较[J].中国辐射卫生,2020,29(1):81-84. DOI: 10.13491/j.issn.1004-714X. 2020.01.019. Zhang HL, Li X, Wu XL, et al. Dosimetry comparison of partial-arc and full-arc volumetric modulated arc therapy for middle esophageal cancer[J]. Chin J Radiol Health,2020,29(1):81-84. DOI: 10.13491/j.issn.1004-714X. 2020.01.019. [8] 王清鑫, 江波, 孙佳娜, 等. 胸中下段食管癌弧内间断出束VMAT计划研究[J].中华放射肿瘤学杂志,2016,25(11):1238-1243. DOI: 10.3760/cma.j.issn.1004-4221.2016. 11.020. Wang QX, Jiang B, Sun JN, et al. A study of finite discontinuity-volumetric modulated arc therapy for mid-and distal-esophageal carcinoma[J].Chin J Radiat Oncol,2016,25(11):1238-1243. DOI: 10.3760/cma.j.issn.1004-4221.2016.11.020. [9] Chen H, Wang H, Gu HL, et al. Study for reducing lung dose of upper thoracic esophageal cancer radiotherapy by auto-planning: volumetric-modulated arc therapy vs intensity-modulated radiation therapy[J]. Med Dosim, 2018,43(3):243-250. DOI: 10.1016/j.meddos.2017. 09.001. [10] 中国医师协会放射肿瘤治疗医师分会, 中华医学会放射肿瘤治疗学分会, 中国抗癌协会肿瘤放射治疗专业委员会. 中国食管癌放射治疗指南(2021年版)[J].国际肿瘤学杂志,2022,49(1):12-25. DOI: 10.3760/cma.j.cn371439-20211021-00002. Chinese Medical Doctor Association Radiation Oncology Physicians Branch, Chinese Society of Radiation Oncology of Chinese Medical Association, Cancer Radiotherapy Professional Committee of China Anti-Cancer Association. Chinese guidelines for radiotherapy of esophageal cancer (2021 ed)[J]. J Int Oncol,2022,49(1):12-25. DOI:10.3760/cma.j.cn371439-20211021-00002. [11] Feuvret L, Noël G, Mazeron JJ, et al. Conformity index: a review[J]. Int J Radiat Oncol Biol Phys, 2006,64(2):333-342. DOI: 10.1016/j.ijrobp.2005.09.028. [12] International Commission on Radiation Units and Measurements. Special considerations regarding-dose and dose-volume prescribing and reporting in IMRT[J]. J ICRU,2010,10(1):27-40. DOI: 10.1093/jicru/ndq008. [13] Gay HA, Niemierko A. A free program for calculating EUD-based NTCP and TCP in external beam radiotherapy[J]. Phys Med, 2007,23(3-4):115-125. DOI: 10.1016/j.ejmp.2007.07.001. [14] Luxton G, Keall PJ, King CR. A new formula for normal tissue complication probability (NTCP) as a function of equivalent uniform dose (EUD)[J]. Phys Med Biol, 2008,53(1):23-36. DOI: 10.1088/0031-9155/53/1/002. [15] 朱健, 李宝生, 舒华忠, 等. 正常组织并发症概率模型综述[J].中国生物医学工程学报,2014,33(2):233-240. DOI: 10.3969/j.issn.0258-8021.2014.02.014. Zhu J, Li BS, Shu HZ, et al. Review of normal tissues complication probability models[J].Chin J Biomed Eng,2014,33(2):233-240. DOI: 10.3969/j.issn.0258-8021.2014.02.014. [16] Burman C, Kutcher GJ, Emami B, et al. Fitting of normal tissue tolerance data to an analytic function[J]. Int J Radiat Oncol Biol Phys, 1991,21(1):123-135. DOI: 10.1016/0360-3016(91)90172-z. [17] Chen H, Huang Y, Wang H, et al.Dosimetric comparison and biological evaluation of fixed-jaw intensity-modulated radiation therapy for T-shaped esophageal cancer[J]. Radiat Oncol, 2021,16(1):158. DOI: 10.1186/s13014-021-01882-7. [18] Wang L, Li CQ, Meng X, et al.Dosimetric and radiobiological comparison of external beam radiotherapy using simultaneous integrated boost technique for esophageal cancer in different location[J]. Front Oncol, 2019,9:674. DOI: 10.3389/fonc.2019.00674. [19] Berry SL, Ma R, Boczkowski A, et al. Evaluating inter-campus plan consistency using a knowledge based planning model[J]. Radiother Oncol, 2016,120(2):349-355. DOI: 10.1016/j.radonc.2016.06.010. [20] Hazell I, Bzdusek K, Kumar P, et al. Automatic planning of head and neck treatment plans[J]. J Appl Clin Med Phys, 2016,17(1):272-282. DOI: 10.1120/jacmp.v17i1.5901. [21] Voet PW, Dirkx ML, Breedveld S, et al. Fully automated volumetric modulated arc therapy plan generation for prostate cancer patients[J]. Int J Radiat Oncol Biol Phys, 2014,88(5):1175-1179. DOI: 10.1016/j.ijrobp.2013. 12.046. [22] Dumane VA, Tam J, Lo YC, et al. RapidPlan for knowledge-based planning of malignant pleural mesothelioma[J]. Pract Radiat Oncol, 2021,11(2):e219-e228. DOI: 10.1016/j.prro.2020.06.003. [23] Marrazzo L, Meattini I, Arilli C, et al. Auto-planning for VMAT accelerated partial breast irradiation[J]. Radiother Oncol, 2019,132:85-92. DOI: 10.1016/j.radonc.2018. 11.006. [24] Yang Y, Shao K, Zhang J, et al.Automatic planning for nasopharyngeal carcinoma based on progressive optimization in RayStation treatment planning system[J]. Technol Cancer Res Treat, 2020,19:1533033820915710. DOI: 10.1177/1533033820915710. [25] 韩飞, 夏文龙, 马攀, 等. 基于预测可行性DVH的肝癌VMAT自动计划方法研究[J].中华放射肿瘤学杂志,2021,30(8):797-802. DOI: 10.3760/cma.j.cn113030-20210501-00183. Han F, Xia WL, Ma P, et al. An automatic VMAT planning method for primary liver cancer radiotherapy based on predicting the feasibility DVH[J].Chin J Radiat Oncol,2021,30(8):797-802. DOI: 10.3760/cma.j.cn113030-20210501-00183.