1Department of Oncology and Radiotherapy, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China; 2Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230022,China; 3Department of Thoracic Surgery, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China
Abstract Radiotherapy is widely used in the treatment of primary and metastatic malignant tumors. It is traditionally believed that the killing effect of radiotherapy on tumor is based on the direct or indirect damage of ionizing radiation to DNA. In recent years, the anti-tumor role and mechanism of anti-tumor immune response induced by ionizing radiation have captivated widespread attention and achieved significant progress. Among them, Cyclic GMP-AMP synthase (cGAS)-stimulator of interference genes (STING) pathway is considered to be one of the key regulatory hubs. cGAS is a cytoplasmic DNA receptor that can bind to tumor-derived double-stranded DNA and activate the downstream STING, thereby activating anti-tumor immune response of the host. In view of the latest progress in this field, the important role and potential mechanism of cGAS-STING pathway in radiotherapy immune effect were mainly summarized, and the application prospect of targeting cGAS-STING pathway in radiotherapy sensitization was explored.
Fund:Surface Project of National Natural Science Foundation of China (81972844); Fundamental Research Funds for the Central Universities (WK9110000160)
Qiu Jieping,Cheng Jingjing,Bao Yawei et al. Recent progress on cGAS-STING pathway in tumor radiotherapy[J]. Chinese Journal of Radiation Oncology, 2023, 32(5): 488-492.
Qiu Jieping,Cheng Jingjing,Bao Yawei et al. Recent progress on cGAS-STING pathway in tumor radiotherapy[J]. Chinese Journal of Radiation Oncology, 2023, 32(5): 488-492.
[1] Citrin DE.Recent developments in radiotherapy[J]. N Engl J Med, 2017,377(11):1065-1075. DOI: 10.1056/NEJMra 1608986. [2] Allen C, Her S, Jaffray DA.Radiotherapy for cancer: present and future[J]. Adv Drug Deliv Rev, 2017,109:1-2. DOI: 10.1016/j.addr.2017.01.004. [3] Philchenkov A.Radiation-induced cell death: signaling and pharmacological modulation[J]. Crit Rev Oncog, 2018,23(1-2):13-37. DOI: 10.1615/CritRevOncog.2018026148. [4] Yu ST, Wang Y, He P, et al.Effective combinations of immunotherapy and radiotherapy for cancer treatment[J]. Front Oncol, 2022,12:809304. DOI: 10.3389/fonc.2022.809304. [5] Demaria S, Coleman CN, Formenti SC.Radiotherapy: changing the game in immunotherapy[J]. Trends Cancer, 2016,2(6):286-294. DOI: 10.1016/j.trecan.2016.05.002. [6] Dar TB, Henson RM, Shiao SL.Targeting innate immunity to enhance the efficacy of radiation therapy[J]. Front Immunol, 2018,9:3077. DOI: 10.3389/fimmu.2018.03077. [7] Zindel J, Kubes P. DAMPs, PAMPs,LAMPs in immunity and sterile inflammation[J]. Annu Rev Pathol, 2020,15:493-518.DOI:10.1146/annurev-pathmechdis-012419-032847. [8] Sun LJ, Wu JX, Du FH, et al.Cyclic GMP-AMP synthase is a cytosolic DNA sensor that activates the type I interferon pathway[J]. Science, 2013,339(6121):786-791. DOI: 10.1126/science.1232458. [9] Decout A, Katz JD, Venkatraman S, et al.The cGAS-STING pathway as a therapeutic target in inflammatory diseases[J]. Nat Rev Immunol, 2021,21(9):548-569. DOI: 10.1038/s41577-021-00524-z. [10] Kwon J, Bakhoum SF.The cytosolic DNA-sensing cGAS-STING pathway in cancer[J]. Cancer Discov, 2020,10(1):26-39. DOI: 10.1158/2159-8290.CD-19-0761. [11] Hopfner KP, Hornung V.Molecular mechanisms and cellular functions of cGAS-STING signalling[J]. Nat Rev Mol Cell Biol, 2020,21(9):501-521. DOI: 10.1038/s41580-020-0244-x. [12] Chin EN, Yu CG, Vartabedian VF, et al.Antitumor activity of a systemic STING-activating non-nucleotide cGAMP mimetic[J]. Science, 2020,369(6506):993-999. DOI: 10.1126/science.abb4255. [13] Slavik KM, Morehouse BR, Ragucci AE, et al.cGAS-like receptors sense RNA and control 3'2'-cGAMP signalling in drosophila[J]. Nature, 2021,597(7874):109-113. DOI: 10.1038/s41586-021-03743-5. [14] Zhang CG, Shang GJ, Gui X, et al.Structural basis of STING binding with and phosphorylation by TBK1[J]. Nature, 2019,567(7748):394-398. DOI: 10.1038/s41586-019-1000-2. [15] Liu SQ, Cai X, Wu JX, et al. Phosphorylation of innate immune adaptor proteins MAVS, STING,TRIF induces IRF3 activation[J]. Science, 2015,347(6227):aaa2630. DOI: 10.1126/science.aaa2630. [16] Chen Q, Sun LJ, Chen ZJ.Regulation and function of the cGAS-STING pathway of cytosolic DNA sensing[J]. Nat Immunol, 2016,17(10):1142-1149. DOI: 10.1038/ni.3558. [17] Domizio JD, Gulen MF, Saidoune F, et al.The cGAS-STING pathway drives type I IFN immunopathology in COVID-19[J]. Nature, 2022,603(7899):145-151. DOI: 10.1038/s41586-022-04421-w. [18] Dou ZX, Ghosh K, Vizioli MG, et al.Cytoplasmic chromatin triggers inflammation in senescence and cancer[J]. Nature, 2017,550(7676):402-406. DOI: 10.1038/nature24050. [19] Harding SM, Benci JL, Irianto J, et al.Mitotic progression following DNA damage enables pattern recognition within micronuclei[J]. Nature, 2017,548(7668):466-470. DOI: 10.1038/nature23470. [20] Yang YQ, Wu M, Cao DQ, et al. ZBP1-MLKL necroptotic signaling potentiates radiation-induced antitumor immunity via intratumoral STING pathway activation[J]. Sci Adv, 2021,7(41):eabf6290. DOI: 10.1126/sciadv.abf6290. [21] Miller KN, Victorelli SG, Salmonowicz H, et al.Cytoplasmic DNA: sources, sensing, and role in aging and disease[J]. Cell, 2021,184(22):5506-5526. DOI: 10.1016/j.cell.2021.09.034. [22] Storozynsky Q, Hitt MM.The impact of radiation-induced DNA damage on cGAS-STING-mediated immune responses to cancer[J]. Int J Mol Sci, 2020,21(22):8877. DOI: 10.3390/ijms21228877. [23] Lam KC, Araya RE, Huang A, et al. Microbiota triggers STING-type I IFN-dependent monocyte reprogramming of the tumor microenvironment[J]. Cell, 2021,184(21):5338-5356.e21. DOI: 10.1016/j.cell.2021.09.019. [24] Han J, Khatwani N, Searles TG, et al.Memory CD8(+) T cell responses to cancer[J]. Semin Immunol, 2020,49:101435. DOI: 10.1016/j.smim.2020.101435. [25] Yum S, Li MH, Chen ZJ.Old dogs, new trick: classic cancer therapies activate cGAS[J]. Cell Res, 2020,30(8):639-648. DOI: 10.1038/s41422-020-0346-1. [26] Deng LF, Liang H, Xu M, et al.STING-dependent cytosolic DNA sensing promotes radiation-induced type I interferon-dependent antitumor immunity in immunogenic tumors[J]. Immunity, 2014,41(5):843-852. DOI: 10.1016/j.immuni.2014.10.019. [27] Vanpouille-Box C, Alard A, Aryankalayil MJ, et al.DNA exonuclease Trex1 regulates radiotherapy-induced tumour immunogenicity[J]. Nat Commun, 2017,8:15618. DOI: 10.1038/ncomms15618. [28] Wang H, Hu SQ, Chen X, et al.cGAS is essential for the antitumor effect of immune checkpoint blockade[J]. Proc Natl Acad Sci U S A, 2017,114(7):1637-1642. DOI: 10.1073/pnas.1621363114. [29] Liang H, Deng LF, Hou YZ, et al.Host STING-dependent MDSC mobilization drives extrinsic radiation resistance[J]. Nat Commun, 2017,8(1):1736. DOI: 10.1038/s41467-017-01566-5. [30] Hou YZ, Liang H, Rao E, et al. Non-canonical NF-κB Antagonizes STING sensor-mediated DNA sensing in radiotherapy[J]. Immunity, 2018,49(3):490-503.e4. DOI: 10.1016/j.immuni.2018.07.008. [31] Deng LF, Liang H, Burnette B, et al.Irradiation and anti-PD-L1 treatment synergistically promote antitumor immunity in mice[J]. J Clin Invest, 2014,124(2):687-695. DOI: 10.1172/JCI67313. [32] Luo M, Liu ZD, Zhang XY, et al.Synergistic STING activation by PC7A nanovaccine and ionizing radiation improves cancer immunotherapy[J]. J Control Release, 2019,300:154-160. DOI: 10.1016/j.jconrel.2019.02.036. [33] Gou SS, Liu WW, Wang S, et al.Engineered nanovaccine targeting Clec9a(+) dendritic cells remarkably enhances the cancer immunotherapy effects of STING agonist[J]. Nano Lett, 2021,21(23):9939-9950. DOI: 10.1021/acs.nanolett.1c03243. [34] Baird JR, Friedman D, Cottam B, et al.Radiotherapy combined with novel STING-targeting oligonucleotides results in regression of established tumors[J]. Cancer Res, 2016,76(1):50-61. DOI: 10.1158/0008-5472.CAN-14-3619. [35] Chao HH, Karagounis IV, Thomas C, et al.Combination of CHEK1/2 inhibition and ionizing radiation results in abscopal tumor response through increased micronuclei formation[J]. Oncogene, 2020,39(22):4344-4357. DOI: 10.1038/s41388-020-1300-x. [36] Feng X, Tubbs A, Zhang CC, et al.ATR inhibition potentiates ionizing radiation-induced interferon response via cytosolic nucleic acid-sensing pathways[J]. EMBO J, 2020,39(14):e104036. DOI: 10.15252/embj.2019104036. [37] Sheng HL, Huang Y, Xiao YZ, et al.ATR inhibitor AZD6738 enhances the antitumor activity of radiotherapy and immune checkpoint inhibitors by potentiating the tumor immune microenvironment in hepatocellular carcinoma[J]. J Immunother Cancer, 2020,8(1) :e000340. DOI: 10.1136/jitc-2019-000340.