[an error occurred while processing this directive] | [an error occurred while processing this directive]
Research progress on the radioprotective effects of epigallocatechin gallate (EGCG) on normal tissues
Xie Liwei1, Cai Shang1, Li Ming2, Tian Ye1
1Department of Radiotherapy Oncology, The Second Affiliated Hospital of Soochow University,Institute of Radiotherapy&Oncology, Soochow University, Suzhou 215004, China; 2School of Radiation Medicine and Protection, Medical College of Soochow University, Suzhou 215123, China
Abstract Eigallocatechin gallate (EGCG) is the main component of catechins in green tea. It has many biological functions, such as neuroprotective, hypoglycemic, antioxidant, antibacterial, antiviral and anti-tumor effects, etc. It has been widely used in food additives and health products. Radiotherapy is one of the main methods for the treatment of malignant tumors. However, due to its damage to the normal tissues surrounding tumors, the therapeutic dose of radiotherapy is limited and the local control rate of tumors is affected. Therefore, it is of great practical significance to find a kind of radioprotective agent, which is highly effective and non-toxic and has the ability to limit tumor growth. This review summarizes relevant preclinical studies and clinical trial data to reveal the radiation protective mechanism of EGCG,aiming to provide some reference for EGCG to become a potential clinical radiation protection agent.
Corresponding Authors:
Tian Ye, Email:dryetian@126.com
Cite this article:
Xie Liwei,Cai Shang,Li Ming et al. Research progress on the radioprotective effects of epigallocatechin gallate (EGCG) on normal tissues[J]. Chinese Journal of Radiation Oncology, 2022, 31(3): 293-297.
Xie Liwei,Cai Shang,Li Ming et al. Research progress on the radioprotective effects of epigallocatechin gallate (EGCG) on normal tissues[J]. Chinese Journal of Radiation Oncology, 2022, 31(3): 293-297.
[1] Gosselin TK, Mautner B. Amifostine as a radioprotectant[J]. Clin J Oncol Nurs, 2002, 6(3):175-176, 180. DOI:10.1188/02. CJON.175-176. [2] Kuruba V, Gollapalli P. Natural radioprotectors and their impact on cancer drug discovery[J]. Radiat Oncol J, 2018, 36(4):265-275. DOI:10.3857/roj.2018.00381. [3] López-Burillo S, Tan DX, Mayo JC, et al. Melatonin, xanthurenic acid, resveratrol, egcg, vitamin C and alpha-lipoic acid differentially reduce oxidative DNA damage induced by fenton reagents:a study of their individual and synergistic actions[J]. J Pineal Res, 2003, 34(4):269-277. DOI:10.1034/j.1600-079x.2003.00041.x. [4] Cai YZ, Sun M, Xing J, et al. Structure-radical scavenging activity relationships of phenolic compounds from traditional Chinese medicinal plants[J]. Life Sci, 2006, 78(25):2872-2888. DOI:10.1016/j.lfs.2005.11.004. [5] Zhu W, Xu J, Ge Y, et al. Epigallocatechin-3-gallate (EGCG) protects skin cells from ionizing radiation via heme oxygenase-1(HO-1) overexpression[J]. J Radiat Res, 2014, 55(6):1056-1065. DOI:10.1093/jrr/rru047. [6] Filip A, Daicoviciu D, Clichici S, et al. Photoprotective effects of two natural products on ultraviolet B-induced oxidative stress and apoptosis in SKH-1 mouse skin[J]. J Med Food, 2011, 14(7-8):761-766. DOI:10.1089/jmf.2010.0142. [7] You H, Wei L, Sun WL, et al. The green tea extract epigallocatechin-3-gallate inhibits irradiation-induced pulmonary fibrosis in adult rats[J]. Int J Mol Med, 2014, 34(1):92-102. DOI:10.3892/ijmm.2014.1745. [8] Tiwari M, Dixit B, Parvez S, et al. EGCG, a tea polyphenol, as a potential mitigator of hematopoietic radiation injury in mice[J]. Biomed Pharmacother, 2017, 88:203-209. DOI:10.1016/j.biopha.2016.12.129. [9] Richi B, Kale RK, Tiku AB. Radio-modulatory effects of green tea catechin EGCG on pBR322 plasmid DNA and murine splenocytes against gamma-radiation induced damage[J]. Mutat Res, 2012, 747(1):62-70. DOI:10.1016/j.mrgentox.2012.04.002. [10] Ozgur E, Sahin D, Tomruk A, et al. The effects of N-acetylcysteine and epigallocatechin-3-gallate on liver tissue protein oxidation and antioxidant enzyme levels after the exposure to radiofrequency radiation[J]. Int J Radiat Biol, 2015, 91(2):187-193. DOI:10.3109/09553002.2015.966210. [11] Xie LW, Cai S, Zhao TS, et al. Green tea derivative (-)-epigallocatechin-3-gallate (EGCG) confers protection against ionizing radiation-induced intestinal epithelial cell death both in vitro and in vivo[J]. Free Radic Biol Med, 2020, 161:175-186. DOI:10.1016/j.freeradbiomed.2020.10.012. [12] Sulistiyani E, Brimson JM, Chansaenroj A, et al. Epigallocatechin-3-gallate protects pro-acinar epithelia against salivary gland radiation injury[J]. Int J Mol Sci, 2021, 22(6) DOI:10.3390/ijms22063162. [13] El-Missiry MA, Othman AI, El-Sawy MR, et al. Neuroprotective effect of epigallocatechin-3-gallate (EGCG) on radiation-induced damage and apoptosis in the rat hippocampus[J]. Int J Radiat Biol, 2018, 94(9):798-808. DOI:10.1080/09553002.2018.1492755. [14] Ding J, Wang H, Wu ZB, et al. Protection of murine spermatogenesis against ionizing radiation-induced testicular injury by a green tea polyphenol[J]. Biol Reprod, 2015, 92(1):6. DOI:10.1095/biolreprod.114.122333. [15] Perdices L, Fuentes-Broto L, Segura F, et al. Epigallocatechin gallate slows retinal degeneration, reduces oxidative damage, and modifies circadian rhythms in P23h rats[J]. Antioxidants (Basel), 2020, 9(8) DOI:10.3390/antiox9080718. [16] Wu CC, Hsu MC, Hsieh CW, et al. Upregulation of heme oxygenase-1 by epigallocatechin-3-gallate via the phosphatidylinositol 3-kinase/Akt and ERK pathways[J]. Life Sci, 2006, 78(25):2889-2897. DOI:10.1016/j.lfs.2005.11.013. [17] Dodson M, Castro-Portuguez R, Zhang DD. NRF2 plays a critical role in mitigating lipid peroxidation and ferroptosis[J]. Redox Biol, 2019, 23:101107. DOI:10.1016/j.redox.2019.101107. [18] Avadhani KS, Manikkath J, Tiwari M, et al. Skin delivery of epigallocatechin-3-gallate (EGCG) and hyaluronic acid loaded nano-transfersomes for antioxidant and anti-aging effects in UV radiation induced skin damage[J]. Drug Deliv, 2017, 24(1):61-74. DOI:10.1080/10717544.2016.1228718. [19] Dodson M, de la Vega MR, Cholanians AB, et al. Modulating NRF2 in disease:timing is everything[J]. Annu Rev PharmacolToxicol, 2019, 59:555-575. DOI:10.1146/annurev-pharmtox-010818-021856. [20] Albi E, Cataldi S, Lazzarini A, et al. Radiation and thyroid cancer[J]. Int J Mol Sci, 2017, 18(5):911. DOI:10.3390/ijms18050911. [21] Kang Q, Zhang X, Cao N, et al. EGCG enhances cancer cells sensitivity under (60) Co γ radiation based on miR-34a/Sirt1/p53[J]. Food Chem Toxicol, 2019, 133:110807. DOI:10.1016/j.fct.2019.110807. [22] Qi X. Reactive oxygen species scavenging activities and inhibition on DNA oxidative damage of dimeric compounds from the oxidation of (-)-epigallocatechin-3-O-gallate[J]. Fitoterapia, 2010, 81(3):205-209. DOI:10.1016/j.fitote.2009.09.004. [23] Yoshioka H, Kurosaki H, Yoshinaga K, et al. Beta ray-induced scission of DNA in tritiated water and protection by a green tea percolate and (-)-epigallocatechin gallate[J]. BiosciBiotechnolBiochem, 1997, 61(9):1560-1563. DOI:10.1271/bbb.61.1560. [24] Yoshioka H, Akai G, Yoshinaga K, et al. Protecting effect of a green tea percolate and its main constituents against gamma ray-induced scission of DNA[J]. BiosciBiotechnolBiochem, 1999, 20(11):2117-2124. DOI:10.1093/carcin/20.11.2117. [25] Liu GS, Yao S, Ni J, et al. Research ofradioprotection of EGCG[J]. J RadiatReasRadiat Proc, 2002, 20(2):87-92. DOI:10.3969/j.issn.1000-3436.2002.02.002. [26] Richi B, Kale RK, Tiku AB. Radio-modulatory effects of green tea catechin EGCG on pBR322 plasmid DNA and murine splenocytes against gamma-radiation induced damage[J]. Mutat Res, 2012, 747(1):62-70. DOI:10.1016/j.mrgentox.2012.04.002. [27] Henning SM, Wang P, Carpenter CL, et al. Epigenetic effects of green tea polyphenols in cancer[J]. Epigenomics, 2013, 5(6):729-741. DOI:10.2217/epi.13.57. [28] Lumniczky K, Impens N, Armengol G, et al. Low dose ionizing radiation effects on the immune system[J]. Environ Int, 2021, 149:106212. DOI:10.1016/j.envint.2020.106212. [29] Yi J, Chen C, Liu X, et al. Radioprotection of EGCG based on immunoregulatory effect and antioxidant activity against (60) Co γ radiation-induced injury in mice[J]. Food Chem Toxicol, 2020, 135:111051. DOI:10.1016/j.fct.2019.111051. [30] Zhao H, Zhu W, Xie P, et al. A phase I study of concurrent chemotherapy and thoracic radiotherapy with oral epigallocatechin-3-gallate protection in patients with locally advanced stage Ⅲ non-small-cell lung cancer[J]. Radiother Oncol, 2014, 110(1):132-136. DOI:10.1016/j.radonc.2013.10.014. [31] Zhao H, Xie P, Li X, et al. A prospective phase Ⅱ trial of EGCG in treatment of acute radiation-induced esophagitis for stage Ⅲ lung cancer[J]. Radiother Oncol, 2015, 114(3):351-356. DOI:10.1016/j.radonc.2015.02.014. [32] Zhao H, Jia L, Chen G, et al. A prospective, three-arm, randomized trial of EGCG for preventing radiation-induced esophagitis in lung cancer patients receiving radiotherapy[J]. Radiother Oncol, 2019, 137:186-191. DOI:10.1016/j.radonc.201 9.02.0 22. [33] Zhu W, Zhao Y, Zhang S, et al. Evaluation of epigallocatechin-3-gallate as a radioprotective agent during radiotherapy of lung cancer patients:a 5-year survival analysis of a phase 2 study[J]. Front Oncol, 2021, 11:686950. DOI:10.3389/fonc.2021.686950. [34] Zhao H, Zhu W, Jia L, et al. Phase I study of topical epigallocatechin-3-gallate (EGCG) in patients with breast cancer receiving adjuvant radiotherapy[J]. Br J Radiol, 2016, 89(1058):20150665. DOI:10.1259/bjr.20150665. [35] Zhu W, Jia L, Chen G, et al. Epigallocatechin-3-gallate ameliorates radiation-induced acute skin damage in breast cancer patients undergoing adjuvant radiotherapy[J]. Oncotarget, 2016, 7(30):48607-48613. DOI:10.18632/oncotarget.9495. [36] Zhu W, Mei H, Jia L, et al. Epigallocatechin-3-gallate mouthwash protects mucosa from radiation-induced mucositis in head and neck cancer patients:a prospective, non-randomised, phase 1 trial[J]. Invest New Drugs, 2020, 38(4):1129-1136. DOI:10.1007/s10637-019-00871-8. [37] Gan RY, Li HB, Sui ZQ, et al. Absorption, metabolism, anti-cancer effect and molecular targets of epigallocatechin gallate (EGCG):an updated review[J]. Crit Rev Food Sci Nutr, 2018, 58(6):924-941. DOI:10.1080/10408398.2016.1231168. [38] Jung AY, Cai X, Thoene K, et al. Antioxidant supplementation and breast cancer prognosis in postmenopausal women undergoing chemotherapy and radiation therapy[J]. Am J Clin Nutr, 2019, 109(1):69-78. DOI:10.1093/ajcn/nqy223. [39] 赵媚, 常凌, 宋泽和, 等. 植物多酚与肠道微生物群的相互作用及其对代谢性疾病影响的研究进展[J]. 食品科学, 2021, 42(5):305-313. DOI:10.7506/spkx1002-6630-20200228-326. Mei Z, Ling C, Zehe S, et al. Interactions between Plant Polyphenols and Intestinal Microbiota and Their Effects on Metabolic Diseases[J]. Food Science,2021,42(5):305-313. DOI:10.7506/spkx1002-6630-20200228-326. [40] Scalliet G, Journot N, Jullien F, et al. Biosynthesis of the major scent components 3,5-dimethoxytoluene and 1,3,5-trimethoxybenzene by novel rose O-methyltransferases[J]. FEBS Lett, 2002, 523(1-3):113-118. DOI:10.1016/s0014-5793(02)02956-3. [41] Loke WM, Jenner AM, Proudfoot JM, et al. A metabolite profiling approach to identify biomarkers of flavonoid intake in humans[J]. J Nutr, 2009, 139(12):2309-2314. DOI:10.3945/jn.109.113613. [42] Quéguineur B, Goya L, Ramos S, et al. Phloroglucinol:antioxidant properties and effects on cellular oxidative markers in human HepG2 cell line[J]. Food Chem Toxicol, 2012, 50(8):2886-2893. DOI:10.1016/j.fct.2012.05.026.