[an error occurred while processing this directive] | [an error occurred while processing this directive]
Optimizing the target volume to boost the efficacy of radiation-induced immunomodulatory effects
Geng Xiaotao1, Wang Xin2, Li Minghuan2
1Department of Radiation Oncology, Weifang People′s Hospital, Weifang 261041, China; 2Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Ji′nan 250117, China
Abstract Radiotherapy is a pivotal method in cancer treatment harbouring immunomodulatory effects. Radiotherapy combined with immunotherapy has been proven to yield promising preliminary results in certain types of tumors. Most studies have concentrated on the dose fractionation of radiotherapy and timing of radiotherapy and immunotherapy. With the development of related studies, attention has been gradually paid to the influence of target volume upon circulating lymphocytes and tumor microenvironment. The interaction between target volume and immunotherapy has been valued. For tumors not suitable for hypofractionated radiotherapy, such as advanced esophageal cancer, conventional fractionated radiotherapy has been adopted. The volume and planning of target volume play a pivotal role in radiotherapy combined with immunotherapy. This article illustrates the feasibility of radiotherapy combined with immunotherapy, theory and conception of optimizing target volume.
Corresponding Authors:
Li Minghuan, Email:sdlmh2014@163.com
Cite this article:
Geng Xiaotao,Wang Xin,Li Minghuan. Optimizing the target volume to boost the efficacy of radiation-induced immunomodulatory effects[J]. Chinese Journal of Radiation Oncology, 2022, 31(2): 214-218.
Geng Xiaotao,Wang Xin,Li Minghuan. Optimizing the target volume to boost the efficacy of radiation-induced immunomodulatory effects[J]. Chinese Journal of Radiation Oncology, 2022, 31(2): 214-218.
[1] Zeng J, See AP, Phallen J, et al. Anti-PD-1 blockade and stereotactic radiation produce long-term survival in mice with intracranial gliomas[J]. Int J Radiat Oncol Biol Phys, 2013, 86(2):343-349. DOI:10.1016/j.ijrobp.2012.12.025. [2] Deng L, Liang H, Burnette B, et al. Irradiation and anti-PD-L1 treatment synergistically promote antitumor immunity in mice[J]. J Clin Invest, 2014, 124(2):687-695. DOI:10.1172/JCI67313. [3] Dovedi SJ, Cheadle EJ, Popple AL, et al. Fractionated radiation therapy stimulates antitumor immunity mediated by both resident and infiltrating polyclonal T-cell populations when combined with PD-1 blockade[J]. Clin Cancer Res, 2017, 23(18):5514-5526. DOI:10.1158/1078-0432. CCR-16-1673. [4] Garg AD, Agostinis P. Cell death and immunity in cancer:from danger signals to mimicry of pathogen defense responses[J]. Immunol Rev, 2017, 280(1):126-148. DOI:10.1111/imr.12574. [5] Lugade AA, Moran JP, Gerber SA, et al. Local radiation therapy of B16 melanoma tumors increases the generation of tumor antigen-specific effector cells that traffic to the tumor[J]. J Immunol, 2005, 174(12):7516-7523. DOI:10.4049/jimmunol.174.12.7516. [6] Venkatesulu BP, Mallick S, Lin SH, et al. A systematic review of the influence of radiation-induced lymphopenia on survival outcomes in solid tumors[J]. Crit Rev Oncol Hematol, 2018, 123:42-51. DOI:10.1016/j.critrevonc.2018.01.003. [7] Nakamura N, Kusunoki Y, Akiyama M. Radiosensitivity of CD4 or CD8 positive human T-lymphocytes by an in vitro colony formation assay[J]. Radiat Res, 1990, 123(2):224-227. [8] Li D, Qu C, Ning Z, et al. Radiation promotes epithelial-to-mesenchymal transition and invasion of pancreatic cancer cell by activating carcinoma-associated fibroblasts[J]. Am J Cancer Res, 2016, 6(10):2192-2206. [9] Xu J, Escamilla J, Mok S, et al. CSF1R signaling blockade stanches tumor-infiltrating myeloid cells and improves the efficacy of radiotherapy in prostate cancer[J]. Cancer Res, 2013, 73(9):2782-2794. DOI:10.1158/0008-5472. CAN-12-3981. [10] Wu Q, Allouch A, Martins I, et al. Macrophage biology plays a central role during ionizing radiation-elicited tumor response[J]. Biomed J, 2017, 40(4):200-211. DOI:10.1016/j.bj.2017.06.003. [11] Lee Y, Auh SL, Wang Y, et al. Therapeutic effects of ablative radiation on local tumor require CD+8 T cells:changing strategies for cancer treatment[J]. Blood, 2009, 114(3):589-595. DOI:10.1182/blood-2009-02-206870. [12] Teng F, Mu D, Meng X, et al. Tumor infiltrating lymphocytes (TILs) before and after neoadjuvant chemoradiotherapy and its clinical utility for rectal cancer[J]. Am J Cancer Res, 2015, 5(6):2064-2074. [13] Kelly RJ, Zaidi AH, Smith MA, et al. The dynamic and transient immune microenvironment in locally advanced esophageal adenocarcinoma post chemoradiation[J]. Ann Surg, 2018, 268(6):992-999. DOI:10.1097/SLA.0000000000002410. [14] Lin X, Zeng T, Xiong J, et al. Combined α-programmed death-1 monoclonal antibody blockade and fractionated radiation therapy reduces tumor growth in mouse EL4 lymphoma[J]. Cancer Biol Ther, 2019, 20(5):666-679. DOI:10.1080/15384047.2018.1550569. [15] Aryankalayil MJ, Makinde AY, Gameiro SR, et al. Defining molecular signature of pro-immunogenic radiotherapy targets in human prostate cancer cells[J]. Radiat Res, 2014, 182(2):139-148. DOI:10.1667/RR13731.1. [16] Dovedi SJ, Adlard AL, Lipowska-Bhalla G, et al. Acquired resistance to fractionated radiotherapy can be overcome by concurrent PD-L1 blockade[J]. Cancer Res, 2014, 74(19):5458-5468. DOI:10.1158/0008-5472. CAN-14-1258. [17] Gong X, Li X, Jiang T, et al. Combined radiotherapy and anti-PD-L1 antibody synergistically enhances antitumor effect in non-small cell lung cancer[J]. J Thorac Oncol, 2017, 12(7):1085-1097. DOI:10.1016/j.jtho.2017.04.014. [18] Tang C, Liao Z, Gomez D, et al. Lymphopenia association with gross tumor volume and lung V5 and its effects on non-small cell lung cancer patient outcomes[J]. Int J Radiat Oncol Biol Phys, 2014, 89(5):1084-1091. DOI:10.1016/j.ijrobp.2014.04.025. [19] Rudra S, Hui C, Rao YJ, et al. Effect of radiation treatment volume reduction on lymphopenia in patients receiving chemoradiotherapy for glioblastoma[J]. Int J Radiat Oncol Biol Phys, 2018, 101(1):217-225. DOI:10.1016/j.ijrobp.2018.01.069. [20] Pike L, Bang A, Mahal BA, et al. The impact of radiation therapy on lymphocyte count and survival in metastatic cancer patients receiving PD-1 immune checkpoint inhibitors[J]. Int J Radiat Oncol Biol Phys, 2019, 103(1):142-151. DOI:10.1016/j.ijrobp.2018.09.010. [21] Wang X, Wang P, Zhao Z, et al. A review of radiation-induced lymphopenia in patients with esophageal cancer:an immunological perspective for radiotherapy[J]. Ther Adv Med Oncol, 2020, 12:1758835920926822. DOI:10.1177/1758835920926822. [22] Sini C, Fiorino C, Perna L, et al. Dose-volume effects for pelvic bone marrow in predicting hematological toxicity in prostate cancer radiotherapy with pelvic node irradiation[J]. Radiother Oncol, 2016, 118(1):79-84. DOI:10.1016/j.radonc.2015.11.020. [23] Saito T, Toya R, Yoshida N, et al. Spleen dose-volume parameters as a predictor of treatment-related lymphopenia during definitive chemoradiotherapy for esophageal cancer[J]. in vivo, 2018, 32(6):1519-1525. DOI:10.21873/invivo.11409. [24] Wirsdrfer F, Cappuccini F, Niazman M, et al. Thorax irradiation triggers a local and systemic accumulation of immunosuppressive CD+4 FoxP3+ regulatory T cells[J]. Radiat Oncol, 2014, 9:98. DOI:10.1186/1748-717X-9-98. [25] Munn DH, Mellor AL. The tumor-draining lymph node as an immune-privileged site[J]. Immunol Rev, 2006, 213:146-158. DOI:10.1111/j.1600-065X.2006.00444.x. [26] Takeshima T, Chamoto K, Wakita D, et al. Local radiation therapy inhibits tumor growth through the generation of tumor-specific CTL:its potentiation by combination with Th1 cell therapy[J]. Cancer Res, 2010, 70(7):2697-2706. DOI:10.1158/0008-5472. CAN-09-2982. [27] Marciscano AE, Ghasemzadeh A, Nirschl TR, et al. Elective nodal irradiation attenuates the combinatorial efficacy of stereotactic radiation therapy and immunotherapy[J]. Clin Cancer Res, 2018, 24(20):5058-5071. DOI:10.1158/1078-0432. CCR-17-3427. [28] Liu H, Wang H, Wu J, et al. Lymphocyte nadir predicts tumor response and survival in locally advanced rectal cancer after neoadjuvant chemoradiotherapy:Immunologic relevance[J]. Radiother Oncol, 2019, 131:52-59. DOI:10.1016/j.radonc.2018.12.001. [29] Fang P, Jiang W, Davuluri R, et al. High lymphocyte count during neoadjuvant chemoradiotherapy is associated with improved pathologic complete response in esophageal cancer[J]. Radiother Oncol, 2018, 128(3):584-590. DOI:10.1016/j.radonc.2018.02.025. [30] Davuluri R, Jiang W, Fang P, et al. Lymphocyte nadir and esophageal cancer survival outcomes after chemoradiation therapy[J]. Int J Radiat Oncol Biol Phys, 2017, 99(1):128-135. DOI:10.1016/j.ijrobp.2017.05.037. [31] Ho WJ, Yarchoan M, Hopkins A, et al. Association between pretreatment lymphocyte count and response to PD1 inhibitors in head and neck squamous cell carcinomas[J]. J Immunother Cancer,2018, 6(1):84. DOI:10.1186/s40425-018-0395-x. [32] Diehl A, Yarchoan M, Hopkins A, et al. Relationships between lymphocyte counts and treatment-related toxicities and clinical responses in patients with solid tumors treated with PD-1 checkpoint inhibitors[J]. Oncotarget, 2017, 8(69):114268-114280. DOI:10.18632/oncotarget.23217. [33] Delyon J, Mateus C, Lefeuvre D, et al. Experience in daily practice with ipilimumab for the treatment of patients with metastatic melanoma:an early increase in lymphocyte and eosinophil counts is associated with improved survival[J]. Ann Oncol, 2013, 24(6):1697-1703. DOI:10.1093/annonc/mDT027. [34] Martens A, Wistuba-Hamprecht K, Yuan J, et al. Increases in absolute lymphocytes and circulating CD+4 and CD+8 T cells are associated with positive clinical outcome of melanoma patients treated with ipilimumab[J]. Clin Cancer Res, 2016, 22(19):4848-4858. DOI:10.1158/1078-0432. CCR-16-0249. [35] Chen D, Verma V, Patel RR, et al. Absolute lymphocyte count predicts abscopal responses and outcomes in patients receiving combined immunotherapy and radiation therapy:analysis of 3 phase 1/2 trials[J]. Int J Radiat Oncol Biol Phys, 2020, 108(1):196-203. DOI:10.1016/j.ijrobp.2020.01.032. [36] Fiedler M, Weber F, Hautmann MG, et al. Infiltrating immune cells are associated with radiosensitivity and favorable survival in head and neck cancer treated with definitive radiotherapy[J]. Oral Surg Oral Med Oral Pathol Oral Radiol, 2020, 129(6):612-620. DOI:10.1016/j.oooo.2020.02.010. [37] Vollenbrock SE, Nowee ME, Voncken F, et al. Gross tumor delineation in esophageal cancer on MRI compared with (18) F-FDG-PET/CT[J]. Adv Radiat Oncol, 2019, 4(4):596-604. DOI:10.1016/j.adro.2019.04.004. [38] Li H, Li F, Li J, et al. Comparison of gross target volumes based on four-dimensional CT, positron emission tomography-computed tomography, and magnetic resonance imaging in thoracic esophageal cancer[J]. Cancer Med, 2020, 9(15):5353-5361. DOI:10.1002/cam4.3072. [39] Wang X, Miao C, Chen Z, et al. Can involved-field irradiation replace elective nodal irradiation in chemoradiotherapy for esophageal cancer? A systematic review and meta-analysis[J]. Onco Targets Ther, 2017, 10:2087-2095. DOI:10.2147/OTT.S130285. [40] Cheng YJ, Jing SW, Zhu LL, et al. Comparison of elective nodal irradiation and involved-field irradiation in esophageal squamous cell carcinoma:a meta-analysis[J]. J Radiat Res, 2018, 59(5):604-615. DOI:10.1093/jrr/rry055. [41] 李巧芳, 李曙光, 许金蕊, 等. 食管癌根治性调强放疗靶区范围对预后生存的影响[J]. 中华放射医学与防护杂志, 2020, 40(8):600-605. DOI:10.3760/cma.j.issn.0254-5098.2020.08.005. Li QF, Li SG, Xu Jr, et al. Survival analysis of patients with non-surgical esophageal carcinoma receiving intensity-modulated radiotherapy (IMRT) alone[J]. Chin J Radiol Med Protect, 2020, 40(8):600-605. DOI:10.3760/cma.j.issn.0254-5098.2020.08.005. [42] Newman NB, Anderson JL, Sherry AD, et al. Dosimetric analysis of lymphopenia during chemoradiotherapy for esophageal cancer[J]. J Thorac Dis, 2020, 12(5):2395-2405. DOI:10.21037/jtd.2020.03.93. [43] Hirano Y, Onozawa M, Hojo H, et al. Dosimetric comparison between proton beam therapy and photon radiation therapy for locally advanced esophageal squamous cell carcinoma[J]. Radiat Oncol, 2018, 13(1):23. DOI:10.1186/s13014-018-0966-5. [44] Routman Dm, Garant A, Lester SC, et al. A comparison of grade 4 lymphopenia with proton versus photon radiation therapy for esophageal cancer[J]. Adv Radiat Oncol, 2019, 4(1):63-69. DOI:10.1016/j.adro.2018.09.004.