[an error occurred while processing this directive] | [an error occurred while processing this directive]
Current status and progress of proton and heavy ion radiotherapy for glioma in adults
Sun Pian, Kong Lin
Department of Head and Neck Neuro-Oncology,Shanghai Proton and Heavy Ion Center / Shanghai Key Laboratory of radiation oncology(20dz2261000) / Shanghai Engineering Research Center of Proton and Heavy Ion Radiation Therapy, Shanghai 201321,China
Abstract Glioma is the most common primary malignant brain tumor. Surgery combined with postoperative radiotherapy is the standard treatment, but the outcome is unsatisfactory. Currently, proton and carbon ion, the most advanced radiotherapy technology, offer substantial clinical advantages over the conventional photon therapy in multiple tumors. However, the effect of proton and carbon ion radiotherapy in glioma has not been clarified clearly. This article will elaborate on the basic research and clinical outcomes of proton and carbon ion radiotherapy for glioma.
Corresponding Authors:
Kong Lin, Email:lin.kong@sphic.org.cn
Cite this article:
Sun Pian,Kong Lin. Current status and progress of proton and heavy ion radiotherapy for glioma in adults[J]. Chinese Journal of Radiation Oncology, 2022, 31(2): 201-207.
Sun Pian,Kong Lin. Current status and progress of proton and heavy ion radiotherapy for glioma in adults[J]. Chinese Journal of Radiation Oncology, 2022, 31(2): 201-207.
[1] Pisapia DJ. The updated world health organization glioma classification:cellular and molecular origins of adult infiltrating gliomas[J]. Arch Pathol Lab Med, 2017, 141(12):1633-1645. DOI:10.5858/arpa.2016-0493-RA. [2] Huang YW, Pan CY, Hsiao YY, et al. Monte Carlo simulations of the relative biological effectiveness for DNA double strand breaks from 300MeV u (-1) carbon-ion beams[J]. Phys Med Biol, 2015, 60(15):5995-6012. DOI:10.1088/0031-9155/60/15/5995. [3] Durante M, Loeffler JS. Charged particles in radiation oncology[J]. Nat Rev Clin Oncol, 2010, 7(1):37-43. DOI:10.1038/nrclinonc.2009.183. [4] Suit H, Delaney T, Goldberg S, et al. Proton vs. carbon ion beams in the definitive radiation treatment of cancer patients[J]. Radiother Oncol, 2010, 95(1):3-22. DOI:10.1016/j.radonc.2010.01.015. [5] Harrabi SB, Bougatf N, Mohr A, et al. Dosimetric advantages of proton therapy over conventional radiotherapy with photons in young patients and adults with low-grade glioma[J]. Strahlenther Onkol, 2016, 192(11):759-769. DOI:10.1007/s00066-016-1005-9. [6] Adeberg S, Harrabi SB, Bougatf N, et al. Intensity-modulated proton therapy, volumetric-modulated arc therapy, and 3D conformal radiotherapy in anaplastic astrocytoma and glioblastoma:a dosimetric comparison[J]. Strahlenther Onkol, 2016, 192(11):770-779. DOI:10.1007/s00066-016-1007-7. [7] Holm A, Petersen J, Muren LP, et al. Functional image-guided dose escalation in gliomas using of state-of-the-art photon vs. proton therapy[J]. Acta Oncol, 2017, 56(6):826-831. DOI:10.1080/0284186X.2017.1285498. [8] Paganetti H, Niemierko A, Ancukiewicz M, et al. Relative biological effectiveness (RBE) values for proton beam therapy[J]. Int J Radiat Oncol Biol Phys, 2002, 53(2):407-421. [9] Chiblak S, Tang Z, Campos B, et al. Radiosensitivity of patient-derived glioma stem cell 3-dimensional cultures to photon, proton, and carbon irradiation[J]. Int J Radiat Oncol Biol Phys, 2016, 95(1):112-119. DOI:10.1016/j.ijrobp.2015.06.015. [10] Combs SE, Bohl J, Elsasser T, et al. Radiobiological evaluation and correlation with the local effect model (LEM) of carbon ion radiation therapy and temozolomide in glioblastoma cell lines[J]. Int J Radiat Biol, 2009, 85(2):126-137. DOI:10.1080/09553000802641151. [11] Isono M, Yoshida Y, Takahashi A, et al. Carbon-ion beams effectively induce growth inhibition and apoptosis in human neural stem cells compared with glioblastoma A172 cells[J]. J Radiat Res, 2015, 56(5):856-861. DOI:10.1093/jrr/rrv033. [12] Sarmiento JM, Venteicher AS, Patil CG. Early versus delayed postoperative radiotherapy for treatment of low-grade gliomas[J]. Cochrane Database Syst Rev, 2015, 6(6):CD009229. DOI:10.1002/14651858. CD009229.pub2. [13] Stupp R, Mason WP, Van den bent MJ, et al. Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma[J]. N Engl J Med, 2005, 352(10):987-996. DOI:10.1056/NEJMoa043330. [14] Stupp R, Hegi ME, Mason WP, et al. Effects of radiotherapy with concomitant and adjuvant temozolomide versus radiotherapy alone on survival in glioblastoma in a randomised phase Ⅲ study:5-year analysis of the EORTC-NCIC trial[J]. Lancet Oncol, 2009, 10(5):459-466. DOI:10.1016/S1470-2045(09)70025-7. [15] Shih HA, Sherman JC, Nachtigall LB, et al. Proton therapy for low-grade gliomas:results from a prospective trial[J]. Cancer, 2015, 121(10):1712-1719. DOI:10.1002/cncr.29237. [16] Sherman JC, Colvin MK, Mancuso SM, et al. Neurocognitive effects of proton radiation therapy in adults with low-grade glioma[J]. J Neurooncol, 2016, 126(1):157-164. DOI:10.1007/s11060-015-1952-5. [17] Hauswald H, Rieken S, Ecker S, et al. First experiences in treatment of low-grade glioma grade I and Ⅱ with proton therapy[J]. Radiat Oncol, 2012, 7:189. DOI:10.1186/1748-717X-7-189. [18] Tsien CI, Brown D, Normolle D, et al. Concurrent temozolomide and dose-escalated intensity-modulated radiation therapy in newly diagnosed glioblastoma[J]. Clin Cancer Res, 2012, 18(1):273-279. DOI:10.1158/1078-0432. CCR-11-2073. [19] Adeberg S, Bernhardt D, Harrabi SB, et al. Sequential proton boost after standard chemoradiation for high-grade glioma[J]. Radiother Oncol, 2017, 125(2):266-272. DOI:10.1016/j.radonc.2017.09.040. [20] Fitzek MM, Thornton AF, Rabinov JD, et al. Accelerated fractionated proton/photon irradiation to 90 cobalt gray equivalent for glioblastoma multiforme:results of a phase Ⅱ prospective trial[J]. J Neurosurg, 1999, 91(2):251-260. DOI:10.3171/jns.1999.91.2.0251. [21] Mizumoto M, Tsuboi K, Igaki H, et al. Phase Ⅰ/Ⅱ trial of hyperfractionated concomitant boost proton radiotherapy for supratentorial glioblastoma multiforme[J]. Int J Radiat Oncol Biol Phys, 2010, 77(1):98-105. DOI:10.1016/j.ijrobp.2009.04.054. [22] Hasegawa A, Mizoe JE, TsujⅡ H, et al. Experience with carbon ion radiotherapy for WHO Grade 2 diffuse astrocytomas[J]. Int J Radiat Oncol Biol Phys, 2012, 83(1):100-106. DOI:10.1016/j.ijrobp.2011.06.1952. [23] Mizoe JE, TsujⅡ H, Hasegawa A, et al. Phase Ⅰ/Ⅱ clinical trial of carbon ion radiotherapy for malignant gliomas:combined X-ray radiotherapy, chemotherapy, and carbon ion radiotherapy[J]. Int J Radiat Oncol Biol Phys, 2007, 69(2):390-396. DOI:10.1016/j.ijrobp.2007.03.003. [24] Combs SE, Bruckner T, Mizoe JE, et al. Comparison of carbon ion radiotherapy to photon radiation alone or in combination with temozolomide in patients with high-grade gliomas:explorative hypothesis-generating retrospective analysis[J]. Radiother Oncol, 2013, 108(1):132-135. DOI:10.1016/j.radonc.2013.06.026. [25] Kong L, Wu J, Gao J, et al. Particle radiation therapy in the management of malignant glioma:early experience at the Shanghai Proton and Heavy Ion Center[J]. Cancer, 2020, 126(12):2802-2810. DOI:10.1002/cncr.32828. [26] Kong L, Gao J, Hu J, et al. Carbon ion radiotherapy boost in the treatment of glioblastoma:a randomized phase I/Ⅲ clinical trial[J]. Cancer Commun (Lond), 2019, 39(1):5. DOI:10.1186/s40880-019-0351-2.