[an error occurred while processing this directive] | [an error occurred while processing this directive]
Research progress on the influencing factors and prognosis of radiation-induced lymphopenia
Sun Guangyi, Wang Shulian
Department of Radiation Oncology, National Cancer Center/National Clinical Research Center for Cancer/ Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
Abstract Lymphocyte-led immunity plays an important role in the occurrence and development of tumors. It has been found that radiotherapy can induce lymphopenia in patients with solid tumors, and radiotherapy-induced lymphopenia (RIL) might be caused by the irradiation of circulating blood. The sensitivity to irradiation differs among different subtypes of lymphocytes. RIL can be affected by radiation fractionation, technique and volume. Meanwhile, it has been proven that RIL can significantly reduce the survival of patients with multiple solid tumors. In this article, relevant researches were reviewed, aiming to advance clinical treatment decisions and optimize radiotherapy protocols.
Fund:National Major Research and Development Program (2016YFC0904600);Beijing Marathon of Hope, Cancer Foundation of China (LC2008A06);the Fundamental Research Funds for the Central Universities (3332019054);Chinese Society of Clinical Oncology-Beijing Xisike Clinical Oncology Research Foundation (Y-2019Sciclone-022)
Sun Guangyi,Wang Shulian. Research progress on the influencing factors and prognosis of radiation-induced lymphopenia[J]. Chinese Journal of Radiation Oncology, 2021, 30(7): 753-756.
Sun Guangyi,Wang Shulian. Research progress on the influencing factors and prognosis of radiation-induced lymphopenia[J]. Chinese Journal of Radiation Oncology, 2021, 30(7): 753-756.
[1] Emens LA. Breast cancer immunotherapy:facts and hopes[J]. Clin Cancer Res, 2018, 24(3):511-520. DOI:10.1158/1078-0432. CCR-16-3001. [2] Rosenthal R, Cadieux EL, Salgado R, et al. Neoantigen-directed immune escape in lung cancer evolution[J]. Nature, 2019, 567(7749):479-485. DOI:10.1038/s41586-019-1032-7. [3] Bekkering S, Joosten LA, van der Meer JW, et al. Trained innate immunity and atherosclerosis[J]. Curr Opin Lipidol, 2013, 24(6):487-492. DOI:10.1097/MOL.0000000000000023. [4] Mohme M, Riethdorf S, Pantel K. Circulating and disseminated tumour cells-mechanisms of immune surveillance and escape[J]. Nat Rev Clin Oncol, 2017, 14(3):155-167. DOI:10.1038/nrclinonc.2016.144. [5] Zhang X, Kim S, Hundal J, et al. Breast cancer neoantigens can induce CD8(+) T-Cell responses and antitumor immunity[J]. Cancer Immunol Res, 2017, 5(7):516-523. DOI:10.1158/2326-6066. CIR-16-0264. [6] Grossman SA, Ellsworth S, Campian J, et al. Survival in patients with severe lymphopenia following treatment with radiation and chemotherapy for newly diagnosed solid tumors[J]. J Natl Compr Canc Netw, 2015, 13(10):1225-1231. DOI:10.6004/jnccn.2015.0151. [7] Al Musawi MS, Jaafar MS, Al-Gailani B, et al. Effects of low-level laser irradiation on human blood lymphocytes in vitro[J]. Lasers Med Sci, 2017, 32(2):405-411. DOI:10.1007/s10103-016-2134-1. [8] Campian JL, Ye X, Brock M, et al. Treatment-related lymphopenia in patients with stage Ⅲ non-small-cell lung cancer[J]. Cancer Invest, 2013, 31(3):183-188. DOI:10.3109/07357907. 2013. 767342. [9] Shiraishi Y, Fang P, Xu C, et al. Severe lymphopenia during neoadjuvant chemoradiation for esophageal cancer:a propensity matched analysis of the relative risk of proton versus photon-based radiation therapy[J]. Radiother Oncol, 2018, 128(1):154-160. DOI:10.1016/j.radonc.2017.11.028. [10] Stanton SE, Disis ml. Clinical significance of tumor-infiltrating lymphocytes in breast cancer[J]. J Immunother Cancer, 2016, 4:59. DOI:10.1186/s40425-016-0165-6. [11] Gridley DS, Pecaut MJ, Nelson GA. Total-body irradiation with high-LET particles:acute and chronic effects on the immune system[J]. Am J Physiol Regul Integr Comp Physiol, 2002, 282(3):R677-688. DOI:10.1152/ajpregu.00435.2001. [12] Bogdándi EN, Balogh A, Felgyinszki N, et al. Effects of low-dose radiation on the immune system of mice after total-body irradiation[J]. Radiat Res, 2010, 174(4):480-489. DOI:10.1667/RR2160.1. [13] Persa E, Balogh A, Sáfrány G, et al. The effect of ionizing radiation on regulatory T cells in health and disease[J]. Cancer Lett, 2015, 368(2):252-261. DOI:10.1016/j.canlet.2015.03.003. [14] Newell EW, Lin W. High-dimensional analysis of human CD8(+) T cell phenotype, function, and antigen specificity[J]. Curr Top Microbiol Immunol, 2014, 377:61-84. DOI:10.1007/82_2013_354. [15] Ordoñez R,Henríquez-Hernández LA, Federico M, et al. Radio-induced apoptosis of peripheral blood CD8 T lymphocytes is a novel prognostic factor for survival in cervical carcinoma patients[J]. Strahlenther Onkol, 2014, 190(2):210-216. DOI:10.1007/s00066-013-0488-x. [16] Deng W, Xu C, Liu A, et al. The relationship of lymphocyte recovery and prognosis of esophageal cancer patients with severe radiation-induced lymphopenia after chemoradiation therapy[J]. Radiother Oncol, 2019, 133:9-15. DOI:10.1016/j.radonc.2018.12.002. [17] MacLennan IC, Kay HE. Analysis of treatment in childhood leukemia. IV. The critical association between dose fractionation and immunosuppression induced by cranial irradiation[J]. Cancer, 1978, 41(1):108-111. DOI:10.1002/1097-0142(197801)41:1<108::aid-cncr2820410116>3.0.co;2-z. [18] Weeke E. The development of lymphopenia in uremic patients undergoing extracorporeal irradiation of the blood with portable beta units[J]. Radiat Res, 1973, 56(3):554-559. [19] Yovino S, Kleinberg L, Grossman SA, et al. The etiology of treatment-related lymphopenia in patients with malignant gliomas:modeling radiation dose to circulating lymphocytes explains clinical observations and suggests methods of modifying the impact of radiation on immune cells[J]. Cancer Invest, 2013, 31(2):140-144. DOI:10.3109/07357907.2012.762780. [20] Sharabi AB, Lim M, DeWeese TL, et al. Radiation and checkpoint blockade immunotherapy:radiosensitisation and potential mechanisms of synergy[J]. Lancet Oncol, 2015, 16(13):e498-e509. DOI:10.1016/s1470-2045(15)00007-8. [21] Mackall CL, Fry TJ, Gress RE. Harnessing the biology of IL-7 for therapeutic application[J]. Nat Rev Immunol, 2011, 11(5):330-342. DOI:10.1038/nri2970. [22] Carl C, Flindt A, Hartmann J, et al. Ionizing radiation induces a motile phenotype in human carcinoma cells in vitro through hyperactivation of the TGF-beta signaling pathway[J]. Cell Mol Life Sci, 2016, 73(2):427-443. DOI:10.1007/s00018-015-2003-2. [23] Bentzen SM, Parliament M, Deasy JO, et al. Biomarkers and surrogate endpoints for normal-tissue effects of radiation therapy:the importance of dose-volume effects[J]. Int J Radiat Oncol Biol Phys, 2010, 76(3 suppl):S145-150. DOI:10.1016/j.ijrobp.2009.08.076. [24] Huang SC, Wei PC, Hwang-Verslues WW, et al. TGF-β1 secreted by Tregs in lymph nodes promotes breast cancer malignancy via up-regulation of IL-17RB[J]. EMBO Mol Med, 2017, 9(12):1660-1680. DOI:10.15252/emmm.201606914. [25] Wild AT, Herman JM, Dholakia AS, et al. Lymphocyte-Sparing effect of stereotactic body radiation therapy in patients with unresectable pancreatic cancer[J]. Int J Radiat Oncol Biol Phys, 2016, 94(3):571-579. DOI:10.1016/j.ijrobp.2015.11.026. [26] Saito T, Toya R, Matsuyama T, et al. Dosimetric predictors of treatment-related lymphopenia induced by palliative radiotherapy:predictive ability of dose-volume parameters based on body surface contour[J]. Radiol Oncol, 2017, 51(2):228-234. DOI:10.1515/raon-2016-0050. [27] Tang C, Liao Z, Gomez D, et al. Lymphopenia association with gross tumor volume and lung V5 and its effects on non-small cell lung cancer patient outcomes[J]. Int J Radiat Oncol Biol Phys, 2014, 89(5):1084-1091. DOI:10.1016/j.ijrobp.2014.04.025. [28] Liu C, Cheng H, Luo G, et al. Circulating regulatory T cell subsets predict overall survival of patients with unresectable pancreatic cancer[J]. Int J Oncol, 2017, 51(2):686-694. DOI:10.3892/ijo.2017.4032. [29] Papatestas AE, Lesnick GJ, Genkins G, et al. The prognostic significance of peripheral lymphocyte counts in patients with breast carcinoma[J]. Cancer, 1976, 37(1):164-168. DOI:10.1002/1097-0142(197601)37:1<164::aid-cncr2820370123>3.0.co;2-h. [30] Pattison CW, Woods KL, Morrison JM. Lymphocytopenia as an independent predictor of early recurrence in breast cancer[J]. Br J Cancer, 1987, 55(1):75-76. DOI:10.1038/bjc.1987.15. [31] De Giorgi U, Mego M, Scarpi E, et al. Relationship between lymphocytopenia and circulating tumor cells as prognostic factors for overall survival in metastatic breast cancer[J]. Clin Breast Cancer, 2012, 12(4):264-269. DOI:10.1016/j.clbc.2012.04.004. [32] Haviland JS, Owen JR, Dewar JA, et al. The UK Standardisation of Breast Radiotherapy (START) trials of radiotherapy hypofractionation for treatment of early breast cancer:10-year follow-up results of two randomised controlled trials[J]. Lancet Oncol, 2013, 14(11):1086-1094. DOI:10.1016/s1470-2045(13)70386-3. [33] Santoiemma PP, Powell DJ, Jr. Tumor infiltrating lymphocytes in ovarian cancer[J]. Cancer Biol Ther, 2015, 16(6):807-820. DOI:10.1080/15384047.2015.1040960. [34] Wimberly H, Brown JR, Schalper K, et al. PD-L1 expression correlates with tumor-infiltrating lymphocytes and response to neoadjuvant chemotherapy in breast cancer[J]. Cancer Immunol Res, 2015, 3(4):326-332. DOI:10.1158/2326-6066. CIR-14-0133. [35] Afghahi A, Purington N, Han SS, et al. Higher absolute lymphocyte counts predict lower mortality from early-stage triple-negative breast cancer[J]. Clin Cancer Res, 2018, 24(12):2851-2858. DOI:10.1158/1078-0432. CCR-17-1323. [36] Stone HB, Peters LJ, Milas L. Effect of host immune capability on radiocurability and subsequent transplantability of a murine fibrosarcoma[J]. J Natl Cancer Inst, 1979, 63(5):1229-1235. [37] Abuodeh Y, Venkat P, Kim S. Systematic review of case reports on the abscopal effect[J]. Curr Probl Cancer, 2016, 40(1):25-37. DOI:10.1016/j.currproblcancer.2015.10.001.