[an error occurred while processing this directive] | [an error occurred while processing this directive]
Utilization of a scintillator detection system for quality assurance in carbon-ion and proton therapy
Li Yongqiang1,2,3, Wenchen Hsi4, Zhao Jun5, Chen Zhi1,2,3, Sun Wei1,2,3
1Department of Medical Physics, Shanghai Proton and Heavy Ion Center, Shanghai 201321, China; 2Shanghai Key Laboratory of Radiation Oncology, Shanghai 201321, China; 3Shanghai Engineering Research Center of Proton and Heavy Ion Radiation Therapy, Shanghai 201321, China; 4Department of Radiation Oncology, University of Florida Health Proton Therapy Institute, Jacksonville, FL 32218, USA; 5Department of Medical Physics, Shanghai Proton and Heavy Ion Center,Department of Radiation Oncology,Fudan University Shanghai Cancer Center, Shanghai 201321, China
AbstractObjective A two-dimensional (2D) in-house-built scintillator detection system (SDS) was utilized for quality assurance of the active spot scanning proton and heavy ion accelerator, aiming to establish a rapid detection method and provide reference for the quality of proton and heavy ion beam (spot position, spot size, virtual source-to-axis distance, profile depth dose distribution and beam range). Methods The SDS consisted of a ceramic gadolinium-sulfoxylate phosphor-scintillating screen, a mirror and a commercial digital camera. The dose distribution image was obtained based on scintillator,mirror reflector and optical signal acquisition device to transform the proton and heavy ion beam into visible light through sulfur gadolinium oxide scintillator and collect visible light information to meet the clinical requirements for the quality of proton and heavy ion beam. Results The deviation of spot position measured by multifilament proportional chamber and the SDS was less than 1mm. The differences of beam spot size measured by multifilament proportional chamber and the SDS were (1.40±0.59)mm for protons, and (0.5±0.08)mm for carbon ions. For 429.25MeV/u carbon, the virtual source-to-axis distance (VSAD) at the x-and y-axes was 751.8cm and 805.6cm. And difference between physical distance and virtual source-to-axis distance was less than 1%. The range of 287.5MeV/u carbon measured by SDS was 160mm. Conclusions The in-house-built scintillator detector can measure beam spot position and size, virtual source, depth distribution curve and range, which can be used as an effective tool for quality assurance control of proton and heavy ion therapy.
Corresponding Authors:
Li Yongqiang,Email:yongqiang.li@sphic.org.cn
Cite this article:
Li Yongqiang,Wenchen Hsi,Zhao Jun et al. Utilization of a scintillator detection system for quality assurance in carbon-ion and proton therapy[J]. Chinese Journal of Radiation Oncology, 2021, 30(7): 697-701.
Li Yongqiang,Wenchen Hsi,Zhao Jun et al. Utilization of a scintillator detection system for quality assurance in carbon-ion and proton therapy[J]. Chinese Journal of Radiation Oncology, 2021, 30(7): 697-701.
[1] 孔琳,陆嘉德. 头颈部恶性肿瘤的质子、重离子治疗实践[J]. 中华放射肿瘤学杂志, 2016, 25(5):427-431. DOI:10.3760/cma.j.issn.1004-4221.2016.05.001.
Kong L, Lu JD. Practice of proton and heavy ion radiotherapies for head and neck malignancies[J]. Chin J Radiat Oncol, 2016, 25(5):427-431. DOI:10.3760/cma.j.issn.1004-4221.2016.05.001.
[2] 管西寅,高晶,胡集祎,等. 质子碳离子笔形束扫描技术治疗头颈部脊索瘤与软骨肉瘤的初步结果[J]. 中华放射肿瘤学杂志, 2018, 27(10):886-889. DOI:10.3760/cma.j.issn.1004-4221.2018.10.003.
Guan XY, Gao J, Hu JY, et al. Preliminary study of pencil beam scanning proton and carbon ion therapy for chordoma and chondrosarcoma of head and neck[J]. Chin J Radiat Oncol, 2018, 27(10):886-889. DOI:10.3760/cma.j.issn.1004-4221.2018.10.003.
[3] Kraft G. Tumor therapy with heavy charged particles[J]. Prog Part Nucl Phy, 2000, 45(2):S473-S544. DOI:10.1016/s0146-6410(00)00112-5.
[4] Tamborini A, Raffaele L, Mirandola A, et al. Development and characterization of a 2D scintillation detector for quality assurance in scanned carbon ion beams[J]. Nucl Inst Meth Phys Res A, 2016, 815(1):23-30. DOI:10.1016/j.nima.2016.01.040.
[5] Klimpki G, Eichin M, Bula C, et al. Real-time beam monitoring in scanned proton therapy[J]. Nucl Ins. Methods Phys Res A, 2018, 891(1):62-67. DOI:10.1016/j.nima.2018.02.107.
[6] Mirandola A, Molinelli S, Vilches Freixas G, et al. Dosimetric commissioning and quality assurance of scanned ion beams at the Italian National Center for Oncological Hadrontherapy[J]. Med Phys, 2015, 42(9):5287-5300. DOI:10.1118/1.4928397.
[7] 韦敏习,侯立飞,杨国洪,等. 用于软X射线图像诊断的CMOS探测系统[J]. 强激光与粒子束, 2014, 26(12):105-108. DOI:10.11884/HPLPB201426.122003.
Wei MX, Hou LF, Yang GH, et al. CMOS detector systems for soft X-ray imaging diagnosis[J]. High Power Laser Part Beams, 2014, 26(12):105-108. DOI:10.11884/HPLPB201426.122003.
[8] 刘志强. 使用辐射自显影胶片对重离子治癌的剂量学验证研究[D]. 北京:清华大学,2013.Liu ZQ. A study of heavy ion radiotherapy dosimetric verification using radiochromic film[D]. Beijing:Tsinghua University, 2013.
[9] 陈涛,李秀芳,虢梦雅,等. Lynx-2D在质子点扫描系统中的运用[J]. 核技术, 2018, 41(5):26-31. DOI:10.11889/j.0253-3219.2018.hjs.41.050201.
Chen T, Li XF, Guo MY, et al. The application of Lynx-2D in proton spot scanning system commissioning[J]. Nucl Tech, 2018, 41(5):26-31. DOI:10.11889/j.0253-3219.2018.hjs.41.050201.
[10] Rossner W, Ostertag M, Jermann F. Properties and applications of gadolinium oxysulfide based ceramic scintillators[G]. Electrochemical Soc Proc, 1999, 98(2):187-189.
[11] Cirrone GAP, Cuttone G, Giove D, et al. Deep characterization of a fast monitoring system for radiotherapeutic proton beams based on scintillating screens and a CCD camera[G]. Nucl Sci Symp Conf Record, 2005. DOI:10.1109/NSSMIC.2004.1462580.
[12] Beddar AS, Mackie TR, Attix FH. Water-equivalent plastic scintillation detectors for high-energy beam dosimetry:Ⅱ. Properties and measurements[J]. Phys Med Biol, 1992, 37(10):1901-1913. DOI:10.1088/0031-9155/37/10/007.
[13] Kawabata S, Kada W, Parajuli RK, et al. In situ ion-beam-induced luminescence analysis for evaluating a micrometer-scale radio-photoluminescence glass dosimeter[J]. Jpn J Appl Phys, 2016, 55(6s1):06GD03. DOI:10.7567/jjap.55.06gd03.
[14] Boon SN, van Luijk P, Schippers JM, et al. Fast 2D phantom dosimetry for scanning proton beams[J]. Med Phys, 1998, 25(4):464-475. DOI:10.1118/1.598221.
[15] 孔兵,王昭,谭玉山. 基于圆拟合的激光光斑中心检测算法[J]. 红外与激光工程, 2002, 31(3):275-279. DOI:10.3969/j.issn.1007-2276.2002.03.020.
Kong B, Wang Z, Tan YS. Algorithm of laser spot detection based on circle fitting[J]. Infrar Laser Engin, 2002, 31(3):275-279. DOI:10.3969/j.issn.1007-2276.2002.03.020.
[16] Archambault L, Ayotte G, Gingras L, et al. SU-FF-T-363:Plastic scintillator preparation and coupling in scintillation dosimetry[J]. Med Phys, 2006, 33(6):2129-2130. DOI:10.1118/1.2241283.
[17] Shimojyu T. Development of a multi-layer ionization chamber for heavy-ion radiotherapy[J]. Phys Med Biol, 2009, 54(7):107-114. DOI:10.1088/0031-9155/54/7/n04.