[an error occurred while processing this directive] | [an error occurred while processing this directive]
Chinese Expert Consensus on Clinical Operation Guidelines of CT Simulation Positioning Technology (2021 edition)
Radiotherapy Technology Group of Radiation Oncology Branch of Chinese Medical Association, Medical Technician Professional Committee of Chinese Medical Doctor Association
Abstract CT-simulation positioning is a radiotherapy simulation positioning technology based on CT images, which can establish a three-dimensional coordinate system, accurately display tumor size, scope of invasion and lymph node metastasis, precisely display the contour of surrounding vital organs and the relationship between tumor and vital organs, providing electron density for the design of radiotherapy plan, which is one of the basic conditions of precise radiotherapy. Chinese Expert Consensus on Clinical Operation Guidelines of CT Simulation Positioning Technology was formulated to standardize clinical operation technology of CT simulation positioning and provide quality assurance for precise tumor target delineation and planning design. This consensus includes overview of application of CT simulation,consensus on CT simulation positioning of common tumors, common post-processing of CT simulation positioning technology, respiratory movement management technology, adverse reactions and processing of CT simulation, prospect of CT simulation, aiming to guide clinical practice of radiation therapists and radiation oncologists and bring survival benefits to patients.
Corresponding Authors:
Lin Chengguang, Department of Radiotherapy, Cancer Center of Sun Yat-sen University, Guangzhou 510060, China, Email:linchg@sysucc.org.cn;Zhang Dekang, Radiotherapy Center of Sichuan Cancer Hospital, Chendu 610041, China,Email:1796280224@qq.com; Liu Jiping,Department of Radiation Physics, Zhejiang Key Laboratory of radiation Oncology, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital),Hangzhou 310022, China, Email: liujp@zjcc.org.cn
Cite this article:
Radiotherapy Technology Group of Radiation Oncology Branch of Chinese Medical Association,Medical Technician Professional Committee of Chinese Medical Doctor Association. Chinese Expert Consensus on Clinical Operation Guidelines of CT Simulation Positioning Technology (2021 edition)[J]. Chinese Journal of Radiation Oncology, 2021, 30(6): 535-542.
Radiotherapy Technology Group of Radiation Oncology Branch of Chinese Medical Association,Medical Technician Professional Committee of Chinese Medical Doctor Association. Chinese Expert Consensus on Clinical Operation Guidelines of CT Simulation Positioning Technology (2021 edition)[J]. Chinese Journal of Radiation Oncology, 2021, 30(6): 535-542.
[1] Nagata Y, Nishidai T, Abe M, et al. CT simulator:a new 3-D planning and simulating system for radiotherapy:part 2. clinical application[J]. Int J Radiat Oncol Biol Phys, 1990, 18(3):505-513.DOI:10.1016/0360-3016(90)90053-M. [2] Nishidai T, Nagata Y, Takahashi M,et al. CT simulator:a new 3-D planning and simulating system for radiotherapy:part 1.Description of system[J]. Int J Radiat Oncol Biol Phys, 1990, 18(3):499-504.DOI:10.1016/0360-3016(90)90052-L. [3] 林承光. 放疗技术学[M]. 北京:人民卫生出版社,2016.Lin CG. Radiotherapy technology[M]. Beijing:People's Medical Publishing House, 2016. [4] Baker GR. Localization:conventional and CT simulation[J]. Br J Radiol, 2006, 79(1):S36-49. DOI:10.1259/bjr/17748030. [5] Steiner E, Shieh CC, Caillet V,et al. Both four-dimensional computed tomography and four-dimensional cone beam computed tomography under-predict lung target motion during radiotherapy[J]. Radiother Oncol, 2019, 135(1):65-73.DOI:10.1016/j.radonc.2019.02.019. [6] Aird EGA, Conway J. CT simulation for radiotherapy treatment planning[J]. Br J Radiol, 2002, 75(900):937-949. DOI:10.1259/bjr.75.900.750937. [7] Mutic S, Palta JR, Butker EK,et al. Quality assurance for computed-tomography simulators and the computed-tomography-simulation process:report of the AAPM Radiation Therapy Committee Task Group No.66[J]. Med Phys, 2003, 30(10):2762-2792. DOI:10.1118/1.1609271. [8] Leech M, Coffey M, Mast M, et al. ESTRO ACROP guidelines for positioning, immobilisation and position verification of head and neck patients for radiation therapists[J]. Tech Innov Patient Support Radiat Oncol, 2017(1):1-7.DOI:10.1016/j.tipsro.2016.12.001. [9] 许森奎,姚文燕,胡江,等. 鼻咽癌发泡胶个体化塑形与标准化头枕放疗体位固定精确度比较[J]. 中华放射肿瘤学杂志,2015, 24(2):196-199. DOI:10.3760/cma.j.issn.1004-4221.2015.02.022. Xu SK, Yao WY, Hu J, et al. Comparison of fixed accuracy between individualized shaping of nasopharyngeal carcinoma and standardized headrest radiotherapy[J]. Chin J Radiat Oncol, 2015, 24(2):196-199. DOI:10.3760/cma.j.issn.1004-4221.2015.02.022. [10] Lin CG, Xu SK, Yao WY, et al. Comparison of set up accuracy among three common immobilisation systems for intensity modulated radiotherapy of nasopharyngeal carcinoma patients[J]. J Med Radiat Sci, 2017, 64(2):106-113.DOI:10.1002/jmrs.189. [11] Bentel GC, Marks LB, Sherouse GW, et al. A customized head and neck support system[J]. Int J Radiat Oncol Biol Phys, 1995, 32(1):245-248. DOI:10.1016/0360-3016(94)00412-E. [12] Houweling AC, van der Meer S, van der Wal E, et al. Improved immobilization using an individual head support in head and neck cancer patients[J]. Radiother Oncol, 2010, 96(1):100-103.DOI:10.1016/j.radonc.2010.04.014. [13] Han K, Cheung P, Basran PS,et al. A comparison of two immobilization systems for stereotactic body radiation therapy of lung tumors[J]. Radiother Oncol,2010, 95(1):103-108. DOI:10.1016/j.radonc.2010.01.025. [14] Cole AJ, Hanna GG, Jain S,et al. Motion management for radical radiotherapy in non-small cell lung cancer[J]. Clin Oncol, 2014, 26(2):67-80.DOI:10.1016/j.clon.2013.11.001. [15] Aznar MC, Warren S, Hoogeman M,et al. The impact of technology on the changing practice of lung SBRT[J]. Phys Med, 2018, 47(1):129-138. DOI:10.1016/j.ejmp.2017.12.020. [16] Kahán Z, Rárosi F, Gaál S,et al. A simple clinical method for predicting the benefit of prone vs.supine positioning in reducing heart exposure during left breast radiotherapy[J]. Radiother Oncol, 2018, 126(3):487-492. DOI:10.1016/j.radonc.2017.12.021. [17] Kirby AM, Evans PM, Donovan EM,et al. Prone versus supine positioning for whole and partial-breast radiotherapy:a comparison of non-target tissue dosimetry[J]. Radiother Oncol, 2010, 96(2):178-184.DOI:10.1016/j.radonc.2010.05.014. [18] De Puysseleyr A, De Neve W, De Wagter C. A patient immobilization device for prone breast radiotherapy:Dosimetric effects and inclusion in the treatment planning system[J]. Phys Med, 2016, 32(6):758-766.DOI:10.1016/j.ejmp.2016.04.013. [19] Serban M, Lambert C, Ruo R, et al. Computed tomography-based virtual simulation versus ultrasound-based clinical setup in electron breast boost radiotherapy:methodology for CT-based electron virtual simulation[J]. Phys Med, 2019, 67(1):100-106.DOI:10.1016/j.ejmp.2019.10.030. [20] Pergolizzi S, Russi EG. Consideration about axillary nodes and arm position.[J]. Radiother Oncol, 2006, 79(3):352-353.DOI:10.1016/j.radonc.2006.03.007. [21] Amini A, Xiao L, Allen PK,et al. Celiac node failure patterns after definitive chemoradiation for esophageal cancer in the modern era[J]. Int J Radiat Oncol Biol Phys, 2012, 83(2):e231-e239. DOI:10.1016/j.ijrobp.2011.12.061. [22] Patel AA, Wolfgang JA, Niemierko A,et al. Implications of respiratory motion as measured by four-dimensional computed tomography for radiation treatment planning of esophageal cancer[J]. Int J Radiat Oncol Biol Phys, 2009, 74(1):290-296.DOI:10.1016/j.ijrobp.2008.12.060. [23] Zhao KL, Liao Z, Bucci MK,et al. Evaluation of respiratory-induced target motion for esophageal tumors at the gastroesophageal junction[J]. Radiother Oncol, 2007, 84(3):283-289. DOI:10.1016/j.radonc.2007.07.008. [24] Bouchard M, McAleer MF, Starkschall G. Impact of gastric filling on radiation dose delivered to gastroesophageal junction tumors[J]. Int J Radiat Oncol Biol Phys, 2010, 77(1):292-300.DOI:10.1016/j.ijrobp.2009.08.026. [25] Hashimoto S, Katsurada M, Muramatsu R,et al. Effect of a device-free compressed shell fixation method on hepatic respiratory movement:analysis for respiratory amplitude of the liver and internal motions of a fiducial marker[J]. Pract Radiat Oncol, 2019, 9(2):e149-e155. DOI:10.1016/j.prro.2018.10.001. [26] 赵永亮,储开岳,吴建亭,等. 胸腹部肿瘤患者放疗体位固定参考等中心与治疗等中心空间距离与后续治疗时摆位误差关系[J]. 中华放射肿瘤学杂志,2015, 24(1):53-54.DOI:10.3760/cma.j.issn.1004-4221.2015.01.015. Zhao YL,Chu KY,Wu JT,et al. Association of distance between fixed reference isocenter and treatment center with set up errors in radiotherapy of patients with thoracic and abdominal tumor[J]. Chin J Radiat Oncol, 2015,24(1):53-54.DOI:10.3760/cma.j.issn.1004-4221.2015.01.015. [27] 刘强,李楠,孙彬.4D-CT重建技术在肝癌精确放疗定位的应用效果[J]. 胃肠病学和肝病学杂志,2016, 25(8):885-888. DOI:10.3969/j.issn.1006-5709.2016.08.012. Liu Q, Li N, Sun B. Effect of 4D-CT reconstruction technique in accurate radiotherapy for hepatocellular carcinoma[J]. Chin J Gastroenter Hepatol, 2016, 25(8):885-888. DOI:10.3969/j.issn.1006-5709.2016.08.012. [28] Ogino I, Uemura H, Inoue T,et al. Reduction of prostate motion by removal of gas in rectum during radiotherapy[J]. Int J Radiat Oncol Biol Phys, 2008, 72(2):456-466.DOI:10.1016/j.ijrobp.2008.01.004. [29] Pearson D, Gill SK, Campbell N,et al. Dosimetric and volumetric changes in the rectum and bladder in patients receiving CBCT-guided prostate IMRT:analysis based on daily CBCT dose calculation[J]. J Appl Clin Med Phys, 2016, 17(6):107-117.DOI:10.1120/jacmp.v17i6.6207. [30] Gez E, Cytron S, Ben Yosef R, et al. Application of an interstitial and biodegradable balloon system for prostate-rectum separation during prostate cancer radiotherapy:a prospective multi-center study[J]. Radiat Oncol, 2013, 8(1):96.DOI:10.1186/1748-717X-8-96. [31] King RB, Osman SO, Fairmichael C,et al. Efficacy of a rectal spacer with prostate SABR—first UK experience[J]. Br J Radiol, 2018, 91(1083):20170672. DOI:10.1259/bjr.20170672. [32] Streller T, Rusch U, Herraiz Lablanca MDH,et al. The effect of endorectal balloon on anorectal dose during postoperative volumetric arc radiotherapy of prostate cancer[J]. Radiother Oncol, 2017, 123(3):454-458. DOI:10.1016/j.radonc.2017.04.014. [33] Eminowicz G, Rompokos V,Stacey C, et al. Understanding the impact of pelvicorgan motion on dose delivered to target volumes during IMRT for cervical cancer[J]. Radiother Oncol, 2017, 122(1):116-121.DOI:10.1016/j.radonc.2016.10.018. [34] Pinkawa M, Gagel B, Demirel C,et al. Dose-volume histogram evaluation of prone and supine patient position in external beam radiotherapy for cervical and endometrialcancer[J]. Radiother Oncol, 2003, 69(1):99-105. DOI:10.1016/S0167-8140(03)00244-5. [35] Olsen JR, Parikh PJ, Watts M,et al. Comparison of dose decrement from intrafraction motion for prone and supine prostate radiotherapy[J]. Radiother Oncol, 2012, 104(2):199-204.DOI:10.1016/j.radonc.2012.06.008. [36] Sawayanagi S, Yamashita H, Ogita M,et al. Volumetric and dosimetric comparison of organs at risk between the prone and supine positions in postoperative radiotherapy for prostate cancer[J]. Radiat Oncol, 2018, 13(1):70.DOI:10.1186/s13014-018-1023-0. [37] Varga L, Kószó RL, Fodor E,et al. Daily setup accuracy, side-effects and quality of life during and after prone positioned prostate radiotherapy[J]. Anticancer Res, 2018, 38(6):3699-3705. DOI:10.21873/anticanres.12648. [38] Liu B, Lerma FA, Patel S,et al. Dosimetric effects of the prone and supine positions on image guided localized prostate cancer radiotherapy[J]. Radiother Oncol,2008, 88(1):67-76.DOI:10.1016/j.radonc.2007.11.034. [39] 李晔雄,王绿化,高黎,等. 肿瘤放射治疗学[M].5版. 北京:中国协和医科大学出版社,2018. Li YX, Wang LH, Gao L, et al. Radiation oncology[M].5th ed. Beijing:Peking Union Medical College Press, 2018. [40] Hoeben BA, Carrie C, Timmermann B,et al. Management of vertebral radiotherapy dose in paediatric patients with cancer:consensus recommendations from the SIOPE radiotherapy working group[J]. Lancet Oncol, 2019, 20(3):e155-e166.DOI:10.1016/S1470-2045(19)30034-8. [41] 徐英杰,胡志辉,黄鹏,等. TomoDirect技术在全脑全脊髓放疗中的应用[J]. 中华放射医学与防护,2015, 35(6):445-448. DOI:10.3760/cma.j.issn.0254-5098.2015.06.010. Xu YJ, Hu ZH, Huang P, et al. Application of TomoDirect for craniospinal irradiation[J]. Chin J Radiol Med Prot, 2015, 35(6):445-448. DOI:10.3760/cma.j.issn.0254-5098.2015.06 010. [42] Holbrook M, Clark DP, Badea CT. Low-dose 4D cardiac imaging in small animals using dual source micro-CT[J]. Phys Med Biol, 2018, 77(2):1137-1143.DOI:10.1002/pros.23372 [43] Liang J, Lack D, Zhou J,et al. Intrafraction 4D-cone beam CT acquired during volumetric arc radiotherapy delivery:kV parameter optimization and 4D motion accuracy for lung stereotactic body radiotherapy (SBRT) patients[J]. J Appl Clin Med Phys, 2019, 20(12):10-24.DOI:10.1002/arcm2.12755. [44] Borm KJ, Oechsner M, Wiegandt M,et al. Moving targets in 4D-CTs versus MIP and AIP:comparison of patients data to phantom data[J]. BMC Cancer, 2018, 18(1):760.DOI:10.1186/s12885-018-4647-4. [45] 杨露,张英杰,李光俊,等. 主动呼吸控制和四维CT技术在肺部肿瘤立体定向放疗中的应用[J]. 中华放射医学与防护杂志,2016, 36(9):667-671.DOI:10.3760/cma.j.issn.0254-5098.2016.09.006. Yang L, Zhang YJ, Li GJ, et al. Application of active breathing control (ABC) and four dimensional CT technology in stereotactic radiotherapy of lung tumor[J]. Chin J Radiol Med Prot, 2016,36(9):667-671.DOI:10.3760/cma.j.issn.0254-5098.2016.09.006. [46] 程光惠,赵红福,刘影. 加速器为基础的体部立体定向放疗进展[J]. 中华放射肿瘤学杂志,2020,29(7):495-501.DOI:10.3760/cma.j.cn113030-20200212-00057. Cheng GH,Zhao HF,Liu Y. Research progress on accelerator based stereotactic body radiotherapy[J]. Chin J Radiat Oncol, 2020, 29(7):495-501.DOI:10.3760/cma.j.cn113030-20200212-00057. [47] Keall PJ, Mageras GS, Balter JM,et al. The management of respiratory motion in radiation oncology report of AAPM Task Group 76[J]. Med Phys, 2006, 33(10):3874-3900.DOI:10.1118/1.2349696. [48] Yoganathan SA, Maria Das KJ, Agarwal A,et al. Magnitude, impact, and management of respiration-induced target motion in radiotherapy treatment:a comprehensive review[J]. J Med Phys, 2017, 42(3):101-115. DOI:10.4103/jmp. JMP_22_17. [49] Akino Y, Sumida I, Shiomi H,et al. Evaluation of the accuracy of the CyberKnife SynchronyTM respiratory tracking system using a plastic scintillator[J]. Med Phys, 2018, 45(8):3506-3515. DOI:10.1002/mp.13028. [50] 曹建勋, 姚国立, 张康燕,等.20418例CT检查非离子型碘对比剂不良反应分析[J]. 中国医学影像学杂志,2017, 25(11):876-880.DOI:10.3969/j.issn.1005-5185.2017.11.021. Cao JX, Yao GL, Zhang KY, et al. Analysis of 20418 cases of non-ioniciodine contrast agent adverse reactions in CT examination[J]. Chin J Med Image, 2017, 25(11):876-880.DOI:10.3969/j.issn.1005-5185.2017.11.021 [51] Park SJ, Kang DY, Sohn KH, et al. Immediate mild reactions to CT with iodinated contrast media:strategy of contrast media reaDministration without corticosteroids[J]. Radiology, 2018, 288(3):710-716.DOI:10.1148/radiol.2018172524. [52] Davenport MS, Khalatbari S, Dillman JR, et al. Contrast material-induced nephrotoxicity and intravenous low-osmolality iodinated contrast material:risk stratification by using estimated glomerular filtration rate[J]. Radiology, 2013, 267(1):94-105. DOI:10.1148/radiol.12121394. [53] 中华医学会放射学分会放射护理专业委员会放射诊断护理学组. 影像科碘对比剂输注安全专家共识[J]. 介入放射学杂志,2018,27(8):707-712. DOI:10.3969/j.issn.1008-794X.2018.08.001. Radiological Diagnostic Nursing Group, Professional Committee on Radiological Nursing Care, Radiology Branch of Chinese Medical Association. Expert consensus on the safety of iodine contrast agent infusion in imaging department[J]. J Intervent Radiol, 2018, 27(8):707-712. DOI:10.3969/j.issn.1008-794X.2018.08.001. [54] Brock KK, Mutic S, McNutt TR, et al. Use of image registration and fusion algorithms and techniques in radiotherapy:report of the AAPM Radiation Therapy Committee Task Group No.132[J]. Med Phys, 2017, 44(7):e43-e76.DOI:10.1002/mp.12256. [55] Korsager AS, Carl J, RIIsOstergaardLR. Comparison of manual and automatic MR-CT registration for radiotherapy of prostate cancer[J]. J Appl Clin Med Phys, 2016, 17(3):294-303.DOI:10.1120/jacmp.v17i3.6088. [56] Tyagi N, Fontenla S, Zelefsky M,et al. Clinical workflow for MR-only simulation and planning in prostate[J]. Radiat Oncol, 2017, 12(1):119. DOI:10.1186/s13014-017-0854-4. [57] Fink JR, Muzi M, Peck M,et al. Multimodality brain tumor imaging:MR imaging, PET, and PET/MR imaging[J]. J Nucl Med, 2015, 56(10):1554-1561.DOI:10.2967/jnumed.113.131516. [58] van Elmpt W, Landry G, Das M, et al. Dual energy CT in radiotherapy:current applications and future outlook[J]. Radiother Oncol, 2016, 119(1):137-144.DOI:10.1016/j.radonc.2016.02.026. [59] McCollough CH, Boedeker K, Cody D, et al. Principles and applications of multienergy CT:report of AAPM Task Group 291[J]. Med Phys, 2020, 47(7):e881-e912. DOI:10.1002/mp.14157. [60] Jarrett D, Stride E, Vallis K, et al. Applications and limitations of machine learning in radiation oncology[J]. Br J Radiol, 2019, 92(1100):20190001.DOI:10.1259/bjr.20190001. [61] Niyazi M, Brada M, Chalmers AJ,et al. ESTRO-ACROP guideline“target delineation of glioblastomas”[J]. Radiother Oncol, 2016, 118(1):35-42. DOI:10.1016/j.radonc.2015.12.003. [62] Liang SB, Sun Y, Liu LZ,et al. Extension of local disease in nasopharyngeal carcinoma detected by magnetic resonance imaging:improvement of clinical target volume delineation[J]. Int J Radiat Oncol Biol Phys, 2009, 75(3):742-750.DOI:10.1016/j.ijrobp.2008.11.053. [63] Lin L, Lu Y, Wang XJ,et al. Delineation of neck clinical target volume specific to nasopharyngeal carcinoma based on lymph node distribution and the international consensus guidelines[J]. Int J Radiat Oncol Biol Phys, 2018, 100(4):891-902. DOI:10.1016/j.ijrobp.2017.11.004. [64] Lee AW, Ng WT, Pan JJ,et al. International guideline for the delineation of the clinical target volumes (CTV) for nasopharyngeal carcinoma[J]. Radiother Oncol, 2018, 126(1):25-36.DOI:10.1016/j.radonc.2017.10.032. [65] Liu XL, Wang WP, Meng QY,et al. Extended-field intensity-modulated radiation therapy combined with concurrent chemotherapy for cervical cancer with para-aortic lymph nodes metastasis[J]. Jpn J Clin Oncol, 2019, 49(3):263-269. DOI:10.1093/jjco/hyy184. [66] 陈韵岱,陈纪言,傅国胜,等. 碘对比剂血管造影应用相关不良反应中国专家共识[J]. 中国介入心脏病学杂志,2014, 22(6):341-348. DOI:10.3969/j.issn.1004-8812.2014.06.001. Chen YD, Chen JY, Fu GS, et al. Chinese expert consensus on adverse reactions related to iodine contrast agent angiography[J]. Chin J Intervent Cardiol, 2014, 22(6):341-348. DOI:10.3969/j.issn.1004-8812.2014.06.001. [67] 中华医学会放射学分会对比剂安全使用工作组. 碘对比剂使用指南(第2版)[J]. 中华医学杂志,2014, 94(43):3363-3369. DOI:10.3760/cma.j.issn.0376-2491.2014.43.003. Chinese Medical Association Radiology Branch Working Group on Contrast Safety Use. Guidelines for the use of iodine contrast (2nd ed)[J]. Chin J Natl Med, 2014, 94(43):3363-3369. DOI:10.3760/cma.j.issn.0376-2491.2014.43.003. [68] Levine GN, Bates ER, Blankenship JC, et al. 2011 ACCF/AHA/SCAI guideline for percutaneous coronary intervention:executive summary:a report of the american college of cardiology foundation/american heart association task force on practice guidelines and the society for cardiovascular angiography and interventions[J]. Circulation, 2011, 124(23):2574-2609. DOI:10.1161/CIR.0b013e31823a5596. [69] 孟鸿宇,江林宫,伏少华,等. 不同部位胰腺癌射波刀治疗前CT定位增强扫描时间优化研究[J]. 中华胰腺病杂志,2017, 17(5):321-325. DOI:10.3760/cma.j.issn.1674-1935.2017.05.008. Meng HY, Jiang LG, Fu SH, et al. The optimaization of CT localization enhanced scan time of pancreatic cancer in different positions before cyberknife treatment[J]. Chin J Pancreatol, 2017, 17(5):321-325. DOI:10.3760/cma.j.issn.1674-1935.2017.05.008.