Abstract Radiotherapy kills tumor cells by radiation-induced DNA double-strand breaks (DSB), however, abnormal DSB repair in tumor cells often leads to radioresistance, in which epigenetics plays an important role. Targeting aberrant epigenetic markers may be a potential means of cancer radiosensitization, but the clinical application of the combination of epigenetic drugs and radiotherapy requires further investigation. This article reviews the latest research progress the role of epigenetics in the repair of radiation-induced DNA damage in tumors.
Jie Xiaohua,Xu Shuangbing,Wu Gang. Research progress on epigenetics in the repair of radiation-induced DNA damage in tumors[J]. Chinese Journal of Radiation Oncology, 2021, 30(12): 1335-1339.
Jie Xiaohua,Xu Shuangbing,Wu Gang. Research progress on epigenetics in the repair of radiation-induced DNA damage in tumors[J]. Chinese Journal of Radiation Oncology, 2021, 30(12): 1335-1339.
[1] Kwon SJ, Lee SK, Na J, et al. Targeting BRG1 chromatin remodeler via its bromodomain for enhanced tumor cell radiosensitivity in vitro and in vivo[J]. Mol Cancer Ther, 2015, 14(2):597-607. DOI:10.1158/1535-7163. MCT-14-0372. [2] Pandita TK, Richardson C. Chromatin remodeling finds its place in the DNA double-strand break response[J]. Nucleic Acids Res, 2009, 37(5):1363-1377. DOI:10.1093/nar/gkn1071. [3] Olino K, Park T, Ahuja N. Exposing hidden targets:combining epigenetic and immunotherapy to overcome cancer resistance[J]. Semin Cancer Biol, 2020, 65:114-122. DOI:10.1016/j.semcancer.2020.01.001. [4] Jones PA, Ohtani H, Chakravarthy A, et al. Epigenetic therapy in immune-oncology[J]. Nat Rev Cancer, 2019, 19(3):151-161. DOI:10.1038/s41568-019-0109-9. [5] Cavalli G, Heard E. Advances in epigenetics link genetics to the environment and disease[J]. Nature, 2019, 571(7766):489-499. DOI:10.1038/s41586-019-1411-0. [6] Vymetalkova V, Vodicka P, Vodenkova S, et al. DNA methylation and chromatin modifiers in colorectal cancer[J]. Mol Aspects Med, 2019, 69:73-92. DOI:10.1016/j.mam.2019.04.002. [7] Zang L, Kondengaden SM, Che F, et al. Potential Epigenetic-Based Therapeutic Targets for Glioma[J]. Front Mol Neurosci, 2018, 11:408. DOI:10.3389/fnmol.2018.00408. [8] Montenegro MF, Sánchez-del-Campo L, Fernández-Pérez MP, et al. Targeting the epigenetic machinery of cancer cells[J]. Oncogene, 2015, 34(2):135-143. DOI:10.1038/onc.2013.605. [9] Ha K, Lee GE, PalII SS, et al. Rapid and transient recruitment of DNMT1 to DNA double-strand breaks is mediated by its interaction with multiple components of the DNA damage response machinery[J]. Hum Mol Genet, 2011, 20(1):126-140. DOI:10.1093/h mg/ddq451. [10] Filipponi D, Emelyanov A, Muller J, et al. DNA damage signaling-induced cancer cell reprogramming as a driver of tumor relapse[J]. Mol Cell, 2019, 74(4):651-663.e8. DOI:10.1016/j.molcel.2019.03.002. [11] Bell EH, Zhang P, Fisher BJ, et al. Association of MGMT promoter methylation status with survival outcomes in patients with high-risk glioma treated with radiotherapy and temozolomide:an analysis from the nrg oncology/RTOG 0424 trial[J]. JAMA Oncol, 2018, 4(10):1405-1409. DOI:10.1001/jamaoncol.2018.1977. [12] Bennett RL, Licht JD. Targeting epigenetics in cancer[J]. Annu Rev Pharmacol Toxicol, 2018, 58:187-207. DOI:10.1146/annurev-pharmtox-010716-105106. [13] Zhao Z, Shilatifard A. Epigenetic modifications of histones in cancer[J]. Genome Biol, 2019, 20(1):245. DOI:10.1186/s13059-019-1870-5. [14] Drané P, Brault ME, Cui G, et al. TIRR regulates 53BP1 by masking its histone methyl-lysine binding function[J]. Nature, 2017, 543(7644):211-216. DOI:10.1038/nature21358. [15] Zhang J, Lee YR, Dang F, et al. Pten methylation by NSD2 controls cellular sensitivity to DNA damage[J]. Cancer Discov, 2019, 9(9):1306-1323. DOI:10.1158/2159-8290. CD-18-0083. [16] Zhu B, Chen S, Wang H, et al. The protective role of DOT1L in UV-induced melanomagenesis[J]. Nat Commun, 2018, 9(1):259. DOI:10.1038/s41467-017-02687-7. [17] Jacquet K, Fradet-Turcotte A, Avvakumov N, et al. The TIP60 complex regulates bivalent chromatin recognition by 53BP1 through direct H4K20me binding and H2AK15 acetylation[J]. Mol Cell, 2016, 62(3):409-421. DOI:10.1016/j.molcel.2016.03.031. [18] Manickavinayaham S, Vélez-Cruz R, Biswas AK, et al. E2F1 acetylation directs p300/CBP-mediated histone acetylation at DNA double-strand breaks to facilitate repair[J]. Nat Commun, 2019, 10(1):4951. DOI:10.1038/s41467-019-12861-8. [19] Koschmieder S, Vetrie D. Epigenetic dysregulation in chronic myeloid leukaemia:a myriad of mechanisms and therapeutic options[J]. Semin Cancer Biol, 2018, 51:180-197. DOI:10.1016/j.semcancer.2017.07.006. [20] Xie J, Li Y, Jiang K, et al. CDK16 Phosphorylates and degrades p53 to promote radioresistance and predicts prognosis in lung cancer[J]. Theranostics, 2018, 8(3):650-662. DOI:10.7150/thno.21963. [21] Huang Y, Hu K, Zhang S, et al. S6K1 phosphorylation-dependent degradation of Mxi1 by β-Trcp ubiquitin ligase promotes Myc activation and radioresistance in lung cancer[J]. Theranostics, 2018, 8(5):1286-1300. DOI:10.7150/thno.22552. [22] Henderson J, Distler J, O'Reilly S. The role of epigenetic modifications in systemic sclerosis:a druggable target[J]. Trends Mol Med, 2019, 25(5):395-411. DOI:10.1016/j.molmed.2019.02.001. [23] Weng W, Li H, Goel A. Piwi-interacting RNAs (piRNAs) and cancer:emerging biological concepts and potential clinical implications[J]. Biochim Biophys Acta Rev Cancer, 2019, 1871(1):160-169. DOI:10.1016/j.bbcan.2018.12.005. [24] Lyu G, Guan Y, Zhang C, et al. TGF-β signaling alters H4K20me3status via miR-29 and contributes to cellular senescence and cardiac aging[J]. Nat Commun, 2018, 9(1):2560. DOI:10.1038/s41467-018-04994-z. [25] Caracciolo D, Di Martino MT, Amodio N, et al. miR-22suppresses DNA ligase Ⅲ addiction in multiple myeloma[J]. Leukemia, 2019, 33(2):487-498. DOI:10.1038/s41375-018-0238-2. [26] Hatano K, Kumar B, Zhang Y, et al. A functional screen identifies miRNAs that inhibit DNA repair and sensitize prostate cancer cells to ionizing radiation[J]. Nucleic Acids Res, 2015, 43(8):4075-4086. DOI:10.1093/nar/gkv273. [27] Haemmig S, Yang D, Sun X, et al. Long noncoding RNA SNHG12 integrates a DNA-PK-mediated DNA damage response and vascular senescence[J]. Sci Transl Med, 2020, 12(531):eaaw1868. DOI:10.1126/scitranslmed.aaw1868. [28] Shihabudeen Haider Ali MS, Cheng X, Moran M, et al. LncRNA Meg3 protects endothelial function by regulating the DNA damage response[J]. Nucleic Acids Res, 2019, 47(3):1505-1522. DOI:10.1093/nar/gky1190. [29] Shen L, Wang Q, Liu R, et al. LncRNA lnc-RI regulates homologous recombination repair of DNA double-strand breaks by stabilizing RAD51 mRNA as a competitive endogenous RNA[J]. Nucleic Acids Res, 2018, 46(2):717-729. DOI:10.1093/nar/gkx1224. [30] Dawson MA, Kouzarides T. Cancer epigenetics:from mechanism to therapy[J]. Cell, 2012, 150(1):12-27. DOI:10.1016/j.cell.2012.06.013. [31] Watanabe R, Ui A, Kanno S, et al. SWI/SNF factors required for cellular resistance to DNA damage include ARID1A and ARID1B and show interdependent protein stability[J]. Cancer Res, 2014, 74(9):2465-2475. DOI:10.1158/0008-5472. CAN-13-3608. [32] Min S, Choi YW, Yun H, et al. Post-translational regulation of the RSF1 chromatin remodeler under DNA damage[J]. Mol Cells, 2018, 41(2):127-133. DOI:10.14348/molcells.2018.2244. [33] Lan L, Ui A, Nakajima S, et al. The ACF1 complex is required for DNA double-strand break repair in human cells[J]. Mol Cell, 2010, 40(6):976-987. DOI:10.1016/j.molcel.2010.12.003. [34] Zhou J, Li J, Serafim RB, et al. Human CHD1 is required for early DNA-damage signaling and is uniquely regulated by its N terminus[J]. Nucleic Acids Res, 2018, 46(8):3891-3905. DOI:10.1093/nar/gky128. [35] Klopf E, Schmidt HA, Clauder-Münster S, et al. INO80 represses osmostress induced gene expression by resetting promoter proximal nucleosomes[J]. Nucleic Acids Res, 2017, 45(7):3752-3766. DOI:10.1093/nar/gkw1292. [36] Dyke S, Saulnier KM, Dupras C, et al. Points-to-consider on the return of results in epigenetic research[J]. Genome Med, 2019, 11(1):31. DOI:10.1186/s13073-019-0646-6. [37] Jiang Y, Qian X, Shen J, et al. Local generation of fumarate promotes DNA repair through inhibition of histone H3demethylation[J]. Nat Cell Biol, 2015, 17(9):1158-1168. DOI:10.1038/ncb3209.