AbstractObjective To propose an automatic planning method of intensity-modulated radiotherapy (IMRT) for esophageal cancer based on dose volume histogram prediction and beam angle optimization in Raystation treatment planning system. Methods 50 IMRT plans of esophageal cancer were selected as the training set to establish a dose prediction model for organs at risk. Another 20 testing plans were optimized in Raystation using RuiPlan and manual method, and the beam angle optimization and dose volume histogram prediction functions of RuiPlan were used for automatic planning. Dosimetric differences and planning efficiency between two methods were statistically compared with paired t-test. Results There were no significant dosimetric differences in the conformity index (CI),homogeneity index (HI) of PTV, V5Gy of both lungs and Dmax of the spinal cord between automatic and manual plans (all P>0.05).compared with those in the manual plans, the V20Gy and Dmean of the left and right lungs generated from automatic plans were reduced by 1.1%, 0.37Gy and 1.2%, 0.38Gy (all P<0.05), and the V30Gy, V40Gy and Dmean of the heart in automatic plans were significantly decreased by 5.1%, 3.0% and 1.41Gy, respectively (all P<0.05). The labor time, computer working time, and monitor unit (MU) number of automatic plans were significantly decreased by 65.8%, 14.1%, and 17.2%, respectively (all P<0.05). Conclusion RuiPlan automatic planning scripts can improve the efficiency of esophageal cancer planning by dose prediction and beam angle optimization, providing an alternative for esophageal cancer radiotherapy planning.
Fund:Joint Construction Project of Henan Medical Science and Technology Research Program in 2019(LHGJ20190661);National Natural Science Foundation of China (81773230)
Corresponding Authors:
Ge Hong, Email:gehong666@126.com
Cite this article:
Lou Zhaoyang,Lei Hongchang,Mao Ronghu et al. A study of automatic planning for esophageal cancer with intensity-modulated radiotherapy based on dose prediction and beam angle optimization[J]. Chinese Journal of Radiation Oncology, 2021, 30(12): 1275-1279.
Lou Zhaoyang,Lei Hongchang,Mao Ronghu et al. A study of automatic planning for esophageal cancer with intensity-modulated radiotherapy based on dose prediction and beam angle optimization[J]. Chinese Journal of Radiation Oncology, 2021, 30(12): 1275-1279.
[1] Guo B, Shah C, Xia P. Automated planning of whole breast irradiation using hybrid IMRT improves efficiency and quality[J]. J Appl Clin Med Phys, 2019, 20(12):87-96. DOI:10.1002/acm2.12 767. [2] Kisling K, Zhang L, Shaitelman SF, et al. Automated treatment planning of postmastectomy radiotherapy[J]. Med Phys, 2019, 46(9):3767-3775. DOI:10.1002/mp.13586. [3] Hu W, Wang J, Li G, et al. Investigation of plan quality between RapidArc and IMRT for gastric cancer based on a novel beam angle and multicriteria optimization technique[J]. Radiother Oncol, 2014, 111(1):144-147. DOI:10.1016/j.radonc.2014.01.024. [4] 张俊,彭应林,朱金汉,等. 射野角度优化方法在全段食管癌IMRT计划设计中的应用[J]. 中国医学物理学杂志, 2020, 37(4):413-418. DOI:10.3969/j.issn.1005-202X.2020.04.004. Zhang J, Peng YL, Zhu JH, et al. Application of shooting angle optimization method in IMRT planning design of whole-segment esophageal cancer[J]. Chin J Med Phys, 2020, 37(4):413-418. DOI:10.3969/j.issn.1005-202X.2020.04.004. [5] 吕明月,李萍,陈韦翔,等. 不同射野入射角度对食管癌放射治疗剂量学的影响[J]. 中国医学物理学杂志,2019, 36(8):908-913. DOI:10.3969/j.issn.1005-202X.2019.08.009. Lyu MY, Li P, Chen WX, et al. Effect of different field incidence angles on dosiology of esophageal cancer[J]. Chin J Med Phys, 2019, 36(8):908-913. DOI:10.3969/j.issn.1005-202X.2019.08.009. [6] Hansen CR, Nielsen M, Bertelsen AS, et al. Automatic treatment planning facilitates fast generation of high-quality treatment plans for esophageal cancer[J]. Acta Oncol, 2017, 56(11):1495-1500. DOI:10.1080/0284186X.2017.1349928. [7] 娄朝阳. Raystation自动计划程序软件:2018SR098800[P]. 2018-02-07. [8] Pang H, Sun X, Yang B, et al. Predicting the dose absorbed by organs at risk during intensity modulated radiation therapy for nasopharyngeal carcinoma[J]. Br J Radiol, 2018, 91(1092):20170289. DOI:10.1259/bjr.20170289. [9] Feuvret L, NoëI G, Mazeron JJ, et al. Conformity index:a review[J]. Int J Radiat Oncol Biol Phys, 2006, 64(2):333-342. DOI:10.1016/j.ijrobp.2005.09.028. [10] Kataria T, Sharma K, Subramani V, et al. Homogeneity Index:An objective tool for assessment of conformal radiation treatments[J]. J Med Phys, 2012, 37(4):207-213. DOI:10.4103/0971-6203.103606. [11] 邵凯南,翁邓胡,李玉成,等. 基于Python脚本的RayStation治疗计划系统逆向调强放疗计划半自动设计[J]. 中国医学物理学杂志,2018, 35(2):156-160. DOI:10.3969/j.issn.1005-202X.2018.02.007. Shao KN, Weng DH, Li YC, et al. The RayStation treatment plan system based on Python script[J]. Chin J Med Phys, 2018, 35(2):156-160. DOI:10.3969/j.issn.1005-202X.2018.02.007. [12] 王雪桃,肖江洪,赵建玲,等. 基于RayStation计划系统的宫颈癌容积旋转调强自动计划设计[J]. 中华放射医学与防护杂志,2018, 38(10):751-755. DOI:10.3760/cma.j.issn.0254-5098.2018.10.006. Wang XT, Xiao JH, Zhao JL, et al. Automatic planning design of cervical cancer volume rotation adjustment based on RayStation planning system[J]. Chin J Radiol Med Protect, 2018, 38(10):751-755. DOI:10.3760/cma.j.issn.0254-5098.2018.10.006. [13] Fogliata A, Belosi F, Clivio A, et al. On the pre-clinical validation of a commercial model-based optimisation engine:application to volumetric modulated arc therapy for patients with lung or prostate cancer[J]. Radiother Oncol, 2014, 113(3):385-391. DOI:10.1016/j.radonc.2014.11.009. [14] Zhang X, Li X, Quan EM, et al. A methodology for automatic intensity-modulated radiation treatment planning for lung cancer[J]. Phys Med Biol, 2011, 56(13):3873-3893. DOI:10.1088/0031-9155/56/13/009.