[an error occurred while processing this directive] | [an error occurred while processing this directive]
Mitigation of interplay effects with layer repainting techniques in intensity-modulated proton therapy for early-stage non-small cell lung cancer
Shang Haijiao1, Pu Yuehu1, Liu Chenbin2, He Xiaodong3, Wang Yuenan4
1Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China; 2MAyo Clinic Arizona, Phoenix 85054, USA; 3Department of Radiation Oncology, Ruijin Hospital Affiliated to the Shanghai JiaoTong University, Shanghai 200025, China; 4National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen 518116, China
AbstractObjective The purpose of current study was to evaluate the interplay effects in intensity-modulated proton therapy (IMPT) for lung cancer and compare the results of different Iso-energy layer repainting techniques in the mitigation of interplay effects. Methods Eight patients with lung cancer who underwent 4DCT were retrospectively selected. A robust CTV-based IMPT plan was generated for each based on commercial TPS, considering patient setup errors ±5 mm, range uncertainties ±3.5%, and CTV time structure motion in 4DCT image. Monte Carlo dose engines were used for all IMPT plans in the final dose calculation. The 4D static dose (4DSD) and 4D dynamic dose (4DDD) were calculated using a hybrid deformable algorithm and simulated proton delivery system for interplay effects. An index[ΔI(ROI,DVH)] was developed to quantitatively evaluate the interplay effects. We applied Iso-energy layer repainting techniques with different numbers of repainting (3, 4, 5, 6, 7) to the robust IMPT plans and evaluated the difference in the mitigation of interplay effects based on the ΔI(ROI,DVH)index. Results Due to interplay effects, the mean values of target coverage, conformity and homogeneity index reduced by 13.7%, 12.7% and 24.6%, respectively. The mean values of lung V5Gy and V20Gy improved by 0.8%,3.4% and 2.6%. Compared to the IMPT plans without layer repainting, Multiple iso-energy layers repainting techniques improved the mean values of CTV coverage by 4.5%,3.8%,3.8%,3.6% and 5.7%, respectively. The average values of lung V20Gy reduced by 1.5%,1.8%,1.7%,1.6% and 1.9%, respectively. Conclusions In the robust CTV-based IMPT plans, the interplay effects degraded the target dose distribution but were mitigated using iso-energy layer repainting techniques. We recommended to use the layer repainting technique according to the characteristics of the patient.
Fund:Three Medical and Health Projects of Shenzhen (SZSM201812062)
Corresponding Authors:
Wang Yuenan, Email:yuenan.wang@yahoo.com
Cite this article:
Shang Haijiao,Pu Yuehu,Liu Chenbin et al. Mitigation of interplay effects with layer repainting techniques in intensity-modulated proton therapy for early-stage non-small cell lung cancer[J]. Chinese Journal of Radiation Oncology, 2020, 29(9): 772-778.
Shang Haijiao,Pu Yuehu,Liu Chenbin et al. Mitigation of interplay effects with layer repainting techniques in intensity-modulated proton therapy for early-stage non-small cell lung cancer[J]. Chinese Journal of Radiation Oncology, 2020, 29(9): 772-778.
[1] Zhang X, Li Y, Pan X, et al. Intensity-modulated proton therapy reduces the dose to normal tissue compared with intensity-modulated radiation therapy or passive scattering proton therapy and enables individualized radical radiotherapy for extensive stage ⅢB nonsmall-cell lung cancer:a virtual clinical study[J]. Int J Radiat Oncol Biol Phys, 2010, 77(2):357-366. DOI:10.1016/j.ijrobp.2009.04.028. [2] Register SP, Zhang X, Mohan R, et al. Proton stereotactic body radiation therapy for clinically challenging cases of centrally and superiorly located stage Ⅰ non-small-cell lung cancer[J]. Int J Radiat Oncol Biol Phys, 2011, 80(4):1015-1022. DOI:10.1016/j.ijrobp.2010.03.012. [3] Kesarwala AH, Ko CJ, Ning H, et al. Intensity-modulated proton therapy for elective nodal irradiation and involved-field radiation in the definitive treatment of locally advanced non-small-cell lung cancer:a dosimetric study[J]. Clin Lung Cancer, 2015, 16(3):237-244. DOI:10.1016/j.cllc.2014.12.001. [4] Lomax AJ. Intensity modulated proton therapy and its sensitivity to treatment uncertainties 2:the potential effects of inter-fraction and inter-field motions[J]. Phys Med Biol, 2008, 53(4):1027-1042. DOI:10.1088/0031-9155/53/4/014. [5] Liu W, Frank SJ, Li X, et al. Effectiveness of robust optimization in intensity-modulated proton therapy planning for head and neck cancers[J]. Med Phys, 2013, 40(5):051711–051718. DOI:10.1118/1.4801899. [6] Liu W, Zhongxing L, Steven E, et al. Impact of respiratory motion on worst-case scenario optimized intensity modulated proton therapy for lung cancers[J]. Pract Radiat Oncol, 2015, 5(2):e77–e86. DOI:10.1016/j.prro.2014.08.002. [7] Kraus KM, Heath E, Oelfke U. Dosimetric consequences of tumor motion due to respiration for a scanned proton beam[J]. Phys Med Biol, 2011, 56(20):6563-6581. DOI:10.1088/0031-9155/56/20/003. [8] Lambert J, Suchowerska N, McKenzie DR, et al. Intra-fractional motion during proton beam scanning[J]. Phys Med Biol, 2005, 50(20):4853-4862. DOI:10.1088/0031-9155/50/20/008. [9] Li Y, Kardar L, Li X, et al. On the Interplay effects with proton scanning beams in stage Ⅲ lung cancer[J]. Med Phys, 2014, 41(2):021721. DOI:10.1118/1.4862076. [10] Kardar L, Li YP, Li XQ, et al. Evaluation and mitigation of the Interplay effects for intensity modulated proton therapy for lung cancer in a clinical setting[J]. Pract Radiat Oncol, 2014, 4(6):e259-e268. DOI:10.1016/j.prro.2014.06.010. [11] Chang JY, Zhang XD, Knopf A. Consensus guidelines for implementing pencil-beam scanning proton therapy for thoracic malignancies on behalf of the PTCOG thoracic and lymphoma subcommittee[J]. Int J Radiat Oncol Biol Phys, 2017, 99(1):41-50. DOI:10.1016/j.ijrobp.2017.05.014. [12] Grassberger C, Dowdell S, Lomax A, et al. Motion interplay as a function of patient parameters and spot size in spot scanning proton therapy for lung cancer[J]. Int J Radiat Oncol Biol Phys, 2013, 86(2):380-386. DOI:10.1016/j.ijrobp.2013.01.024. [13] Zenklusen SM, Pedroni E, Meer D. A study on repainting strategies for treating moderately moving targets with proton pencil beam Scanning at the new gantry 2 at PSI[J]. Phys Med Biol, 2010, 55(17):5103-5121. DOI:10.1088/0031-9155/55/17/014. [14] Weistrand O, Svensson S. The anaconda algorithm for deformable image registration in radiotherapy[J]. Med Phys, 2015, 42(1):40-53. DOI:10.1118/1.4894702. [15] Kadoya N, Nakajima Y, Saito M, et al. Multi-institutional validation study of commercially available deformable image registration software for thoracic images[J]. Int J Radiat Oncol Biol Phys, 2016, 96():422–431. DOI:10.1016/j.ijrobp.2016.05.012. [16] Paganetti H. Range uncertainties in proton therapy and the role of Monte Carlo simulations[J]. Phys Med Biol, 2012, 57(11):R99-R117. DOI:10.1088/0031-9155/57/11/R99. [17] Fredriksson A, Forsgren A,Hrdemark B. Minimax optimization for handling range and setup uncertainties in proton therapy[J]. Med Phys, 2011, 38(3):1672-1684. DOI:10.1118/1.3556559. [18] Engdahl S. Validation of ion therapy dose calculation algorithms by Monte Carlo[M]. Stockholm:Physics of Medical Imaging Department of Physics, 2015. [19] Langner UW, Mundis M, Strauss D, et al. A comparison of two pencil beam scanning treatment planning systems for proton therapy[J]. J Appl Clin Med Phys, 2018, 19(1):156-163. DOI:10.1002/acm2.12235. [20] Taylor PA, Kry SF, Followill DS. Pencil beam algorithms are unsuitable for proton dose calculations in lung[J]. Int J Radiat Oncol Biol Phys, 2017, 99(3):750-756. DOI:10.1016/j.ijrobp.2017.06.003. [21] Bortfeld T, Jokivarsi K, Goitein M, et al. Effects of intra-fraction motion on IMRT dose delivery:statistical analysis and simulation[J]. Phys Med Biol, 2002, 47(13):2203-2220. DOI:10.1088/0031-9155/47/13/302. [22] Phillips MH, Pedroni E, Blattmann H, et al. Effects of respiratory motion on dose uniformity with a charged particle scanning method[J]. Phys Med Biol, 1992, 37(1):223-234. DOI:10.1088/0031-9155/37/1/016. [23] Lambert J, Suchowerska N, McKenzie D, et al. Intra-fractional motion during proton beam scanning[J]. Phys Med Biol, 2005, 50(20):4853-4862. DOI:10.1088/0031-9155/50/20/008. [24] Kraus K, Heath E, Oelfke U. Dosimetric consequences of tumour motion due to respiration for a scanned proton beam[J]. Phys Med Biol, 2011, 56(20):6563-6581. DOI:10.1088/0031-9155/56/20/003. [25] Bert C, Grözinger S, Rietzel E. Quantification of interplay effects of scanned particle beams and moving targets[J]. Phys Med Biol, 2008, 53(9):2253-2265. DOI:10.1088/0031-9155/53/9/003. [26] Erik E, Lars G, Elin H. Effectiveness of different rescanning techniques for scanned proton radiotherapy in lung cancer patients[J]. Phys Med Biol, 2018, 63(9):095006. DOI:10.1088/1361-6560/aabb7b. [27] Rouabhi O, Ma MY, Bayouth J, et al. Impact of temporal probability in 4D dose calculation for lung tumors[J]. J Appl Clin Med Phys, 2015, 16(6):110-118. DOI:10.1120/jacmp.v16i6.5517.