Abstract Stereotactic body radiotherapy (SBRT) has become an important radiotherapy technology. In recent years, with the continuous improvement of the mechanical properties of the linear accelerator (LINAC), LINAC-based SBRT is gradually emerging. In this article, the history, technological progress, radiation physics, clinical application of LINAC-based SBRT were elaborated, aiming to promote the development of LINAC-based SBRT.
Fund:National Natural Science Foundation of China (81703034);Project of Science and Technology Department of Jilin Province (Bethune Project)(20160101079JC);Project of Science and Technology Department of Jilin Province (20190303151SF)
Cite this article:
Cheng Guanghui,Zhao Hongfu,Liu Ying. Research progress on accelerator-based stereotactic body radiotherapy[J]. Chinese Journal of Radiation Oncology, 2020, 29(7): 495-501.
Cheng Guanghui,Zhao Hongfu,Liu Ying. Research progress on accelerator-based stereotactic body radiotherapy[J]. Chinese Journal of Radiation Oncology, 2020, 29(7): 495-501.
[1] Lasak JMGorecki JP. The history of stereotactic radiosurgery and radiotherapy[J]. Otolaryngol Clin North Am, 2009, 42(4):593-599. DOI:10.1016/j.otc.2009.04.003. [2] Chang SD, Main W, Martin DP, et al. An analysis of the accuracy of the CyberKnife:a robotic frameless stereotactic radiosurgical system[J]. Neurosurgery, 2003, 52(1):140-146;discussion 146-147. DOI:10.1097/00006123-200301000-00018. [3] Zhang Y, Chiu T, Dubas J, et al. Benchmarking techniques for stereotactic body radiotherapy for early-stage glottic laryngeal cancer:LINAC-based non-coplanar VMAT vs. Cyberknife planning[J]. Radiat Oncol, 2019, 14(1):193. DOI:10.1186/s13014-019-1404-z. [4] Atalar B, Aydin G, Gungor G, et al. Dosimetric comparison of robotic and conventional linac-based stereotactic lung irradiation in early-stage lung cancer[J]. Technol cancer res treat, 2012, 11(3):249-255. DOI:10.7785/tcrt.2012.500293. [5] Chang Z, Wang Z, Wu QJ, et al. Dosimetric characteristics of Novalis Tx system with high definition multileaf collimator[J]. Med Phys, 2008, 35(10):4460-4463. DOI:10.1118/1.2977668. [6] Lee YC, Kim Y. Circular collimator arc versus dynamic conformal arc treatment planning for linac-based stereotactic radiosurgery of an intracranial small single lesion:a perspective of lesion asymmetry[J]. Radiat Oncol, 2019, 14(1):91. DOI:10.1186/s13014-019-1307-z. [7] Sharma SD, Kumar S, Dagaonkar SS, et al. Dosimetric comparison of linear accelerator-based stereotactic radiosurgery systems[J]. J Med Phys, 2007, 32(1):18-23. DOI:10.4103/0971-6203.31145. [8] Saitoh J, Saito Y, Kazumoto T, et al. Therapeutic effect of linac-based stereotactic radiotherapy with a micro-multileaf collimator for the treatment of patients with brain metastases from lung cancer[J]. Jpn J Clin Oncol, 2010, 40(2):119-124. DOI:10.1093/jjco/hyp128. [9] Murai T, Hattori Y, Sugie C, et al. Comparison of multileaf collimator and conventional circular collimator systems in Cyberknife stereotactic radiotherapy[J]. J Radiat Res, 2017, 58(5):693-700. DOI:10.1093/jrr/rrw130. [10] Vassiliev ON, Titt U, Ponisch F, et al. Dosimetric properties of photon beams from a flattening filter free clinical accelerator[J]. Phys Med Biol, 2006, 51(7):1907-1917. DOI:10.1088/0031-9155/51/7/019. [11] Lai Y, Chen S, Xu C, et al. Dosimetric superiority of flattening filter free beams for single-fraction stereotactic radiosurgery in single brain metastasis[J]. Oncotarget, 2017, 8(21):35272-35279. DOI:10.18632/oncotarget.13085. [12] Barbiero S, Rink A, Matteucci F, et al. Single-fraction flattening filter-free volumetric modulated arc therapy for lung cancer:Dosimetric results and comparison with flattened beams technique[J]. Med Dosim, 2016, 41(4):334-338. DOI:10.1016/j.meddos.2016.09.002. [13] Gevaert T, Verellen D, Engels B, et al. Clinical evaluation of a robotic 6-degree of freedom treatment couch for frameless radiosurgery[J]. Int J Radiat Oncol Biol Phys, 2012, 83(1):467-474. DOI:10.1016/j.ijrobp.2011.05.048. [14] Hanley J, Debois MM, Mah D, et al. Deep inspiration breath-hold technique for lung tumors:the potential value of target immobilization and reduced lung density in dose escalation[J]. Int J Radiat Oncol Biol Phys, 1999, 45(3):603-611. DOI:10.1016/s0360-3016(99)00154-6. [15] Wong JW, Sharpe MB, Jaffray DA, et al. The use of active breathing control (ABC) to reduce margin for breathing motion[J]. Int J Radiat Oncol Biol Phys, 1999, 44(4):911-919. DOI:10.1016/s0360-3016(99)00056-5. [16] Giraud P, Yorke E, Jiang S, et al. Reduction of organ motion effects in IMRT and conformal 3D radiation delivery by using gating and tracking techniques[J]. Cancer Radiother, 2006, 10(5):269-282. DOI:10.1016/j.canrad.2006.05.009. [17] Nakayama M, Nishimura H, Mayahara H, et al. Clinical log data analysis for assessing the accuracy of the CyberKnife fiducial-free lung tumor tracking system[J]. Pract Radiat Oncol, 2018, 8(2):e63-e70. DOI:10.1016/j.prro.2017.10.014. [18] Gierga DP, Brewer J, Sharp GC, et al. The correlation between internal and external markers for abdominal tumors:implications for respiratory gating[J]. Int J Radiat Oncol Biol Phys, 2005, 61(5):1551. DOI:10.1016/j.ijrobp.2004.12.013. [19] Liu HH, Koch N, Starkschall G, et al. Evaluation of internal lung motion for respiratory-gated radiotherapy using MRI:Part Ⅱ-margin reduction of internal target volume[J]. Int J Radiat Oncol Biol Phys, 2004, 60(5):1473. DOI:10.1016/j.ijrobp.2004.05.054. [20] Willoughby TR, Kupelian PA, Pouliot J, et al. Target localization and real-time tracking using the Calypso 4D localization system in patients with localized prostate cancer[J]. Int J Radiat Oncol Biol Phys, 2006, 65(2):528-534. DOI:10.1016/j.ijrobp.2006.01.050. [21] Bell LJ, Eade T, Kneebone A, et al. Initial experience with intra-fraction motion monitoring using Calypso guided volumetric modulated arc therapy for definitive prostate cancer treatment[J]. J Med Radiat Sci, 2017, 64(1):25-34. DOI:10.1002/jmrs.224. [22] Kim J, Wen N, Jin JY, et al. Clinical commissioning and use of the Novalis Tx linear accelerator for SRS and SBRT[J]. J Appl Clin Med Phys, 2012, 13(3):3729. DOI:10.1120/jacmp.v13i3.3729. [23] Foster RD, Speiser MP, Solberg TD. Commissioning and verification of the collapsed cone convolution superposition algorithm for SBRT delivery using flattening filter-free beams[J]. J Appl Clin Med Phys, 2014, 15(2):4631. DOI:10.1120/jacmp.v15i2.4631. [24] Ryu S, Pugh SL, Gerszten PC, et al. RTOG 0631 phase 2/3 study of image guided stereotactic radiosurgery for localized (1-3) spine metastases:Phase 2 results[J]. Pract Radiat Oncol, 2014, 4(2):76-81. DOI:10.1016/j.prro.2013.05.001. [25] Fiorentino A, Tebano U, Sicignano G, et al. Hippocampal dose during Linac-based stereotactic radiotherapy for brain metastases:An observational study[J]. Phys Med, 2017, 49:135-138. DOI:10.1016/j.ejmp.2017.09.129. [26] Fundowicz M, Adamczyk M, Kolodziej-Dybas A. Stereotactic body radiation therapy for liver metastasis-The linac-based Greater Poland Cancer Centre practice[J]. Rep Pract Oncol Radiother, 2017, 22(2):158-162. DOI:10.1016/j.rpor.2017.02.008. [27] Cilla S, Ianiro A, Deodato F, et al. Optimal beam margins in linac-based VMAT stereotactic ablative body radiotherapy:a Pareto front analysis for liver metastases[J]. Med Dosim, 2018, 43(3):291-301. DOI:10.1016/j.meddos.2017.10.006. [28] Li S, Yang J, Liu J, et al. Dosimetric comparison of helical tomotherapy and conventional Linac-based X-knife stereotactic body radiation therapy for primary lung cancer or pulmonary metastases[J]. J Thorac Dis, 2018, 10(2):999-1006. DOI:10.21037/jtd.2018.01.64. [29] Dai Z, Zhang H, Xie Y, et al. Validation of geometric and dosimetric accuracy of edge accelerator gating with electromagnetic tracking:a phantom study[C]. IEEE Access, 2019. DOI:10.1109/access.2019.2934858. [30] Tanny S, Sperling NParsai EI. Correction factor measurements for multiple detectors used in small field dosimetry on the Varian Edge radiosurgery system[J]. Med Phys, 2015, 42(9):5370-5376. DOI:10.1118/1.4928602. [31] Mancosu P, Fogliata A, Stravato A, et al. Accuracy evaluation of the optical surface monitoring system on EDGE linear accelerator in a phantom study[J]. Med Dosim, 2016, 41(2):173-179. DOI:10.1016/j.meddos.2015.12.003. [32] Minniti G, Scaringi C, Clarke E, et al. Frameless linac-based stereotactic radiosurgery (SRS) for brain metastases:analysis of patient repositioning using a mask fixation system and clinical outcomes[J]. Radiat Oncol, 2011, 6(1):158. DOI:10.1186/1748-717X-6-158. [33] Fuss M, Salter BJ, Rassiah P, et al. Repositioning accuracy of a commercially available double-vacuum whole body immobilization system for stereotactic body radiation therapy[J]. Technol Cancer Res Treat, 2004, 3(1):59-67. DOI:10.1177/153303460400300107. [34] Han K, Cheung P, Basran PS, et al. A comparison of two immobilization systems for stereotactic body radiation therapy of lung tumors[J]. Radiother Oncol, 2010, 95(1):103-108. DOI:10.1016/j.radonc.2010.01.025. [35] Ueda Y, Teshima T, Cardenes H, et al. Evaluation of initial setup errors of two immobilization devices for lung stereotactic body radiation therapy (SBRT)[J]. J Appl Clin Med Phys, 2017, 18(4):62-68. DOI:10.1002/acm2.12093. [36] IshⅡ K, Okada W, Ogino R, et al. A treatment-planning comparison of three beam arrangement strategies for stereotactic body radiation therapy for centrally located lung tumors using volumetric-modulated arc therapy[J]. J Radiat Res, 2016, 57(3):273-279. DOI:10.1093/jrr/rrv105. [37] Sanford L, Molloy J, Kumar S, et al. Evaluation of plan quality and treatment efficiency for single-isocenter/two-lesion lung stereotactic body radiation therapy[J]. J Appl Clin Med Phys, 2019, 20(1):118-127. DOI:10.1002/acm2.12500. [38] Huang L, Park K, Boike T, et al. A study on the dosimetric accuracy of treatment planning for stereotactic body radiation therapy of lung cancer using average and maximum intensity projection images[J]. Radiother Oncol, 2010, 96(1):48-54. DOI:10.1016/j.radonc.2010.04.003. [39] Tian Y, Wang Z, Ge H, et al. Dosimetric comparison of treatment plans based on free breathing, maximum, and average intensity projection CTs for lung cancer SBRT[J]. Med Phys, 2012, 39(5):2754-2760. DOI:10.1118/1.4705353. [40] Gallo JJ, Kaufman I, Powell R, et al. Single-fraction spine SBRT end-to-end testing on TomoTherapy, Vero, TrueBeam, and CyberKnife treatment platforms using a novel anthropomorphic phantom[J]. J Appl Clin Med Phys, 2015, 16(1):5120. DOI:10.1120/jacmp.v16i1.5120. [41] Ozyigit G, Cengiz M, Yazici G, et al. A retrospective comparison of robotic stereotactic body radiotherapy and three-dimensional conformal radiotherapy for the reirradiation of locally recurrent nasopharyngeal carcinoma[J]. Int J Radiat Oncol Biol Phys, 2011, 81(4):e263-268. DOI:10.1016/j.ijrobp.2011.02.054. [42] Liu F, Xiao JP, Xu GZ, et al. Fractionated stereotactic radiotherapy for 136 patients with locally residual nasopharyngeal carcinoma[J]. Radiat Oncol, 2013, 8:157. DOI:10.1186/1748-717x-8-157. [43] Chang JY, Senan S, Paul MA, et al. Stereotactic ablative radiotherapy versus lobectomy for operable stage Ⅰnon-small-cell lung cancer:a pooled analysis of two randomised trials[J]. Lancet Oncol, 2015, 16(6):630-637. DOI:10.1016/s1470-2045(15)70168-3. [44] Feddock J, Mcgarry R. Safety and toxicity of linac-based stereotactic body radiotherapy (SBRT) boost to residual disease in locally advanced non-small cell lung cancer:preliminary results of a single institution feasibility study[J]. Int J Radiat Oncol Biol Phys, 2010, 78(3):S108-S109. DOI:10.1016/j.ijrobp.2010.07.279. [45] Baba F, Shibamoto Y, Tomita N, et al. Stereotactic body radiotherapy for stage Ⅰ lung cancer and small lung metastasis:evaluation of an immobilization system for suppression of respiratory tumor movement and preliminary results[J]. Radiat Oncol, 2009, 4:15. DOI:10.1186/1748-717X-4-15. [46] Comito T, Cozzi L, Clerici E, et al. Can stereotactic body radiation therapy be a viable and efficient therapeutic option for unresectable locally advanced pancreatic adenocarcinoma? Results of a phase 2 study[J]. Technol Cancer Res Treat, 2016, 16(3):295-301. DOI:10.1177/1533034616650778. [47] Zhong J, Patel K, Switchenko J, et al. Outcomes for patients with locally advanced pancreatic adenocarcinoma treated with stereotactic body radiation therapy versus conventionally fractionated radiation[J]. Cancer, 2017, 123(18):3486-3493. DOI:10.1002/cncr.30706. [48] Mazzola R, Fersino S, Aiello D, et al. Linac-based stereotactic body radiation therapy for unresectable locally advanced pancreatic cancer:risk-adapted dose prescription and image-guided delivery[J]. Strahlenther Onkol, 2018, 194(9):835-842. DOI:10.1007/s00066-018-1306-2. [49] Lasley FD, Mannina EM, Johnson CS, et al. Treatment variables related to liver toxicity in patients with hepatocellular carcinoma, Child-Pugh class A and B enrolled in a phase 1-2 trial of stereotactic body radiation therapy[J]. Pract Radiat Oncol, 2015, 5(5):e443-e449. DOI:10.1016/j.prro.2015.02.007. [50] Su TS, Liang P, Lu HZ, et al. Stereotactic body radiation therapy for small primary or recurrent hepatocellular carcinoma in 132 Chinese patients[J]. J Surg Oncol, 2016, 113(2):181. DOI:10.1002/jso.24128. [51] D′Agostino G, Franzese C, De Rose F, et al. High-quality linac-based stereotactic body radiation therapy with flattening filter free beams and volumetric modulated arc therapy for low-intermediate risk prostate cancer. A mono-institutional experience with 90 patients[J]. Clinical Oncology, 2016, 28(12):e173-e178. DOI:10.1016/j.clon.2016.06.013. [52] Alongi F, Mazzola R, Fiorentino A, et al. Phase Ⅱ study of accelerated Linac-based SBRT in five consecutive fractions for localized prostate cancer[J]. Strahlenther Onkol, 2019, 195(2):113-120. DOI:10.1007/s00066-018-1338-7. [53] Franzese C, D′Agostino G, Di Brina L, et al. Linac-based stereotactic body radiation therapy vs. moderate hypofractionated radiotherapy in prostate cancer:propensity-score based comparison of outcome and toxicity[J]. Br J Radiol, 2019, 92(1097):20190021. DOI:10.1259/bjr.20190021. [54] DeNittis A, Wang Y, Orisamolu A, et al. A phase Ⅱ experience evaluating quality of life and survival in linac-based SBRT for prostate cancer[J]. J Radiat Oncol, 2016, 5(4):445-451. DOI:10.1007/s13566-016-0249-4. [55] Giaj-Levra N, Niyazi M, Figlia V, et al. Feasibility and preliminary clinical results of linac-based stereotactic body radiotherapy for spinal metastases using a dedicated contouring and planning system[J]. Radiat Oncol, 2019, 14(1):184. DOI:10.1186/s13014-019-1379-9.