Department of Radiation Oncology,Zhongnan Hospital of Wuhan University,Wuhan 430071,China (Zhang J,Zhou YF,Xie CH,Liu H,Zhou FX,Dai J,Zhong YH);School of Physics and Technology,Wuhan University,Wuhan 430072,China (Zhou DY)
AbstractObjective To divide computed tomography (CT) values into different ranges and investigate the influence of CT value division on dose calculation, and to propose a method to combine magnetic resonance imaging (MRI) with assigned CT values. Methods Ten CT images each were collected from patients with head and neck, chest, and pelvic tumors. Random sampling was performed for the CT values of main tissues or organs at the three parts, and then the mean CT value of each tissue or organ was calculated to divide the CT values into different ranges. A virtual phantom was built in the Varian Eclipse treatment planning system, and for the prescribed dose of 100 cGy, the machine output was recorded at different CT values. The influence of different CT value ranges on dose calculation was analyzed. The treatment plans of intensity-modulated radiotherapy were selected from 5 cervical cancer patients, and new CT values were assigned to the planning target volume (PTV) and organs at risk to obtain new CT images. The plans were transferred to the new CT images and compared with the results on the original CT images in terms of dosimetric parameters. Results After dividing the CT values into different ranges and verifying the results in dose calculation, the CT values corresponding to different human tissues or organs were -100 to 100 HU. The influence of CT value variation on dose calculation was within 3%. In the same treatment plan, there were small differences in dosimetric parameters between new CT images and original CT images. Dmax, Dmean, D98%, D95%, D5%, and D2% of PTV were all below 3%, and Dmax and Dmean of the bladder, rectum, small intestine, femoral head, and bone marrow were below 2%. Conclusions The influence of CT value division on dose calculation in the treatment planning for pelvic tumors is acceptable, so it can be used in combination with MRI.
Zhang Jun,Zhou Dingyi,Xie Conghua et al. Influence of CT value division on dose calculation in treatment planning[J]. Chinese Journal of Radiation Oncology, 2017, 26(9): 1067-1071.
Zhang Jun,Zhou Dingyi,Xie Conghua et al. Influence of CT value division on dose calculation in treatment planning[J]. Chinese Journal of Radiation Oncology, 2017, 26(9): 1067-1071.
[1] Buzug T.Computed tomography:from photon statistics to modern cone-beam CT[M].Berlin Heidelberg:Springer,2008.DOI:10.1007/978-3-540-39408-2. [2] Khoo VS,Dearnaley DP,Finnigan DJ,et al. Magnetic resonance imaging (MRI):considerations and applications in radiotherapy treatment planning[J].Radiother Oncol,1997,42(1):1-15.DOI:10.1016/S0167-8140(96)01866-X. [3] Sannazzari GL,Ragona R,Ruo Redda MG,et al. CT–MRI image fusion for delineation of volumes in three-dimensional conformal radiation therapy in the treatment of localized prostate cancer[J].Br J Radiol,2002,75(895):603-607.DOI:10.1259/bjr.75.895.750603. [4] 汤晓斌,陈达,戴耀东,等.用CT值推导人体组织属性参数的方法及改进[J].南京航空航天大学学报,2006,38(3):373-377.DOI:10.3969/j.issn.1005-2615.2006.03.021. Tang XB,Chen D,Dai YD,et al. Method for converting CT numbers into mass density and elemental weights of tissue and its improvement[J].J Nanjing Univ Aeronaut Astronaut,2006,38(3):373-377.DOI:10.3969/j.issn.1005-2615.2006.03.021. [5] Wang L,Chui CS,Lovelock M.A patient-specific Monte Carlo dose-calculation method for photon beams[J].Med Phys,1998,25(6):867-878.DOI:10.1118/1.598262. [6] Walters BRB,Kawrakow I,Rogers DWO.Dosxyznrc users manual[R].NRC Report PIRS-794,2005. [7] DeMarco JJ,Solberg TD,Smathers JB.A CT-based Monte Carlo simulation tool for dosimetry planning and analysis[J].Med Phys,1998,25(1):1-11.DOI:10.1118/1.598167. [8] Schneider W,Bortfeld T,Schlegel W.Correlation between CT numbers and tissue parameters needed for Monte Carlo simulations of clinical dose distributions[J].Phys Med Biol,2000,45(2):459-478.DOI:10.1088/0031-9155/45/2/314. [9] Chen LL,Price RA,Wang L,et al. MRI-based treatment planning for radiotherapy:dosimetric verification for prostate IMRT[J].Int J Radiat Oncol Biol Phys,2004,60(2):636-647.DOI:10.1016/S0360-3016(04)00960-5. [10] 邱强.CT值相对电子密度校正及其对TPS计算精度的影响[J].医疗装备,2010,23(12):11-12.DOI:10.3969/j.issn.1002-2376.2010.12.006.Qiu Q.The CT value of relative electron density correction and affect the calculation accuracy of TPS[J].Med Equip,2010,23(12):11-12.DOI:10.3969/j.issn.1002-2376.2010.12.006. [11] 冯国生,梁远,吴丹玲,等.CT值-相对电子密度转换曲线的影响因素分析[J].中华放射肿瘤学杂志,2012,21(3):281-284.DOI:10.3760/cma.j.issn.1004-4221.2012.03.026. Feng GS,Liang Y,Wu DL,et al. Impact factor of relationships between CT value and relative electron density for treatment planning system[J].Chin J Radiat Oncol,[1] 2012,21(3):281-284.DOI:10.3760/cma.j.issn.1004-4221.2012.03.026. [12] 祁振宇,黄劭敏,邓小武.放疗计划CT值的校准检测及其影响因素分析[J].癌症,2006,25(1):110-114.DOI:10.3969/j.issn.1000-467X.2006.01.024. Qi ZY,Huang SM,Deng XW.Calibration of CT values used for radiation treatment planning and its impact factors[J].Chin J Cancer,2006,25(1):110-114.DOI:10.3969/j.issn.1000-467X.2006.01.024. [13] William H.Computed tomography:fundamentals,system technology,image quality,applications,3rd revised and enlarged Edition[J].Med Phys,2012,39(2):1152-1153.DOI:10.1118/1.3679335. [14] Dowling JA,Lambert J,Parker J,et al. An atlas-based electron density mapping method for magnetic resonance imaging (MRI)-alone treatment planning and adaptive MRI-based prostate radiation therapy[J].Int J Radiat Oncol Biol Phys,2012,83(1):e5-e11.DOI:10.1016/j.ijrobp.2011.11.056. [15] Stanescu T,Jans HS,Pervez N,et al. A study on the magnetic resonance imaging (MRI)-based radiation treatment planning of intracranial lesions[J].Phys Med Biol,2008,53(13):3579-3593.DOI:10.1088/0031-9155/53/13/013. [16] Chen SP,Quan H,Qin A,et al. MR image-based synthetic CT for IMRT prostate treatment planning and CBCT image-guided localization[J].J Appl Clin Med Phys,2016,17(3):6065.DOI:10.1120/jacmp.v17i3.6065. [17] Johansson A,Karlsson M,Nyholm T.CT substitute derived from MRI sequences with ultrashort echo time[J].Med Phys,2011,38(5):2708-2714.DOI:10.1118/1.3578928. [18] Acharya S,Fischer-Valuck BW,Kashani R,et al. Online magnetic resonance image guided adaptive radiation therapy:first clinical applications[J].Int J Radiat Oncol Biol Phys,2016,94(2):394-403.DOI:10.1016/j.ijrobp.2015.10.015.