Abstract Objective To investigate the gamma (γ) passing rates for volumetric-modulated arc therapy (VMAT) dosimetric verification with different techniques. Methods A total of 12 VMAT plans for the treatment of different anatomical sites in cancer patients were chosen. The Octavius 4D system was used to measure the dose distributions in two different settings:the gantry was rotating (three-dimensional (3D) and 2D γ-analysis) and the gantry was fixed at 0°(2D γ-analysis). The γ passing rates were analyzed with 3%/3 mm and 2%/2 mm criteria, using the paired t test or Wilcoxon signed-rank test. The 2D γ passing rates for different irradiation methods were calculated. Results For the 3D and 2D dose distributions obtained at a rotating gantry angle as well as the 2D dose distribution obtained at zero gantry angle, the average γ passing rates were 96.03%, 96.98%, and 98.90% for 3%/3 mm (P= 0.227, P= 0.000, P= 0.003);82.08%, 84.04%, and 90.90% for 2%/2 mm (P= 0.379, P= 0.000, P= 0.000). For the 2D dose distributions obtained with different irradiation methods, the average γ passing rate was 98.99% for 3%/3 mm and 93.68% for 2%/2 mm. Conclusions The VMAT dosimetric verification based on a 3D volumetric dosimeter at a rotating gantry position can be clinically useful for delivery quality assurance (QA), and can achieve the most reliable dose calculation for VMAT, which has more referential values.
Niu Zhenyang,Fei Zhenle,Duan Zongjin et al. Analysis of VMAT dosimetric verifications with different techniques[J]. Chinese Journal of Radiation Oncology, 2017, 26(8): 929-933.
Niu Zhenyang,Fei Zhenle,Duan Zongjin et al. Analysis of VMAT dosimetric verifications with different techniques[J]. Chinese Journal of Radiation Oncology, 2017, 26(8): 929-933.
[1] McGrath SD,Matuszak MM,Yan D,et al. Volumetric modulated arc therapy for delivery of hypofractionated stereotactic lung radiotherapy:a dosimetric and treatment efficiency analysis[J].Radiother Oncol,2010,95(2):153-157.DOI:10.1016/j.radonc.2009.12.039. [2] Yu CX.Tang G.Intensity-modulated arc therapy:principles,technologies and clinical implementation[J].Phys Med Biol,2011,56(5):R31-R54.DOI:10.1088/0031-9155/56/5/R01. [3] Verbakel WF,Cuijpers JP,Hoffmans D,et al. Volumetric intensity-modulated arc therapy vs.conventional IMRT in head-and-neck cancer:a comparative planning and dosimetric study[J].Int J Radiat Oncol Biol Phys,2009,74(1):252-259.DOI:10.1016/j.ijrobp.2008.12.033. [4] Wolff D,Stieler F,Welzel G,et al. Volumetric modulated arc therapy (VMAT) vs.serial tomotherapy,step-and-shoot IMRT and 3D-conformal RT for treatment of prostate cancer[J].Radiother Oncol,2009,93(2):226-233.DOI:10.1016/j.radonc.2009.08.011. [5] Otto K.Volumetric modulated arc therapy:IMRT in a single gantry arc[J].Med Phys,2008,35(1):310-317.DOI:10.1118/1.2818738. [6] Zhu JH,Chen LX,Jin GH,et al. A comparison of VMAT dosimetric verifications between fixed and rotating gantry positions[J].Phys Med Biol,2013,58(5):1315-1322.DOI:10.1088/0031-9155/58/5/1315. [7] 蒋胜鹏,李智华.加速器机架角度对多叶准直器叶片到位精度的影响[J].中华放射肿瘤学杂志,2009,18(4):317-320.DOI:10.3760/cma.j.issn.1004-4221.2009.04.317. Jiang SP,Li ZH.Impact of accelerator′s gantry angle on multi-leaf collimator position accuracy[J].Chin J Radiat Oncol,2009,18(4):317-320.DOI:10.3760/cma.j.issn.1004-4221.2009.04.317. [8] Spezi E,Angelini AL,Romani F,et al. Characterization of a 2D ion chamber array for the verification of radiotherapy treatments[J].Phys Med Biol,2005,50(14):3361-3373.DOI:10.1039/b504580k. [9] Gago-Arias A,Brualla-González L,González-Castaňo DM,et al. Evaluation of chamber response function influence on IMRT verification using 2D commercial detector arrays[J].Phys Med Biol,2012,57(7):2005-2020.DOI:10.1088/0031-9155/57/7/2005. [10] Shimohigashi Y,Araki F,Tominaga H,et al. Angular dependence correction of MatriXX and its application to composite dose verification[J].J Appl Clin Med Phys,2012,13(5):3856.DOI:10.1120/jacmp.v13i5.3856. [11] Herzen J,Todorovic M,Cremers F,et al. Dosimetric evaluation of a 2D pixel ionization chamber for implementation in clinical routine[J].Phys Med Biol,2007,52(4):1197-1208.DOI:10.1088/0031-9155/52/4/023. [12] Li JG,Yan G,Liu C.Comparison of two commercial detector arrays for IMRT quality assurance[J].J Appl Clin Med Phys,2009,10(2):2942. [13] McGarry CK,O’Connell BF,Grattan MWD,et al. Octavius 4D characterization for flattened and flattening filter free rotational deliveries[J].Med Phys,2013,40(9):091707.DOI:10.1118/1.4817482. [14] Lang S,Reggiori G,Vaquee JP,et al. Pretreatment quality assurance of flattening filter free beams on 224 patients for intensity modulated plans:a multicentric study[J].Med Phys,2012,39(3):1351-1356.DOI:10.1118/1.3685461. [15] 阮长利,徐利明,宋启斌,等.不同机架角时多叶准直器叶片对不同IMRT剂量影响[J].中华放射肿瘤学杂志,2011,20(4):345-347.DOI:10.3760/cma.j.issn.1004-4221.2011.04.024. Ruan CL,Xu LM,Song QB,et al. Impact of accelerator’s multi-leaf collimator leaves on the intensity modulated radiation therapy dose at different gantry angles[J].Chin J Radiat Oncol,2011,20(4):345-347.DOI:10.3760/cma.j.issn.1004-4221.2011.04.024. [16] 孔伟,丁莉,叶红强,等.IMRT计划中射野角度归零与实际角度的剂量验证比较[J].中国医学物理学杂志,2015,32(6):892-896.DOI:10.3969/j.issn.1005-202X.2015.06.028. Kong W,Ding L,Ye HQ,et al. Dosimetric verification of practical beam angle and beam angle returning to zero in intensity-modulated radiotherapy plan[J].Chin J Med Phys,2015,32(6):892-896.DOI:10.3969/j.issn.1005-202X.2015.06.028. [17] 甘家应,胡银祥,罗元强,等.Elekta Precise直线加速器新型全碳素纤维治疗床床板对放疗剂量的影响[J].中华放射医学与防护杂志,2012,32(4):386-389.DOI:10.3760/cma.j.issn.0254-5098.2012.04.013. Gan JY,Hu YX,Luo YQ,et al. Effect of the new carbon fiber bed board of Elekta Precise linear accelerator on the radiation dose[J].Chin J Radiol Med Prot,2012,32(4):386-389.DOI:10.3760/cma.j.issn.0254-5098.2012.04.013. [18] Ezzell GA,Burmeister JW,Dogan N,et al. IMRT commissioning:multiple institution planning and dosimetry comparisons,a report from AAPM Task Group 119[J].Med Phys,2009,36(11):5359-5373.DOI:10.1118/1.3238104. [19] Basran PS,Woo MK.An analysis of tolerance levels in IMRT quality assurance procedures[J].Med Phys,2008,35(6):2300-2307.DOI:10.1118/1.2919075.