Abstract Objective To assess the feasibility of “secondary check” by LinaTech TiGRT treatment planning systems. Methods Choosing the Linatech TiGRT treatment planning system,researched and developed by Linatech company,as the third-party check tools. First,using Linatech TPS for recomputing treatment plans for geometrical phantoms designed in TG-119 and patients.after computation,compared the point dose with the measured data of phantoms (Using chameber No.2571 to measure point dose) and original plans. Using PTW verisoft with a criteria of 3% dose difference and 5 mm distance to agreement to assess the dose distribution on center level. After then,you can assess the accuracy of treatment plans. Results Tiny volume changes were found in ROI,especially in small size phantoms orcuspidal regions. For comparing measured data with recomputed plans and original plans,the dose data were found basically identical in TG-119 phantoms. And for patients,the differences between recomputed plans and AAA original plans or AXB original plans were smaller in breast cancer,but they were even bigger innasopharynx cancer,all patient cases showed a gamma passing rate more than 90%.The gamma passing rate of AAA original plans and AXB original plans were 95.6% and 97.53% for breast cancer,and 94.67% and 96.83% for nasopharynx cancer. Conclusions The method of utilizing the LinaTech TiGRT treatment planning system as a third-party check tools to assess the accuracy of plans is feasible,and the validation process is convenient,but some functions still need to improve and the scope of differences still need more patient cases to determine.
Corresponding Authors:
Lu Miaozhen,Email:Email:thm15717489921@sina.com
Cite this article:
Tang Huimin,Lu Miao zhen. The feasibility research of checking treatment plan by using Linatech treatment planning system[J]. Chinese Journal of Radiation Oncology, 2017, 26(7): 800-805.
Tang Huimin,Lu Miao zhen. The feasibility research of checking treatment plan by using Linatech treatment planning system[J]. Chinese Journal of Radiation Oncology, 2017, 26(7): 800-805.
[1] Stojadinovic S,Ouyang L,Gu XJ,et al. Breaking bad IMRT QA practice[J].J Appl Clin Med Phys,2015,16(3):5242.DOI:10.1120/jacmp.v16i3.5242. [2] Njeh CF,Parker BC,Orton CG.Evaluation of treatment plans using target and normal tissue DVHs is no longer appropriate[J].Med Phys,2015,42(5):2099-2102.DOI:10.1118/1.4903902. [3] Childress,Chen Q,Rong Y.Parallel/Opposed:IMRT QA using treatment log files is superior to conventional measurement-based method[J].J Appl Clin Med Phys,2015,16(1):5385.DOI:10.1120/jacmp.v16i1.5385. [4] Ezzeu GA,Burmeister JW,Dogan N,et al. IMRT commissioning:multiple institution planning and dosimetry comparisons,a report from AAPM Task Group 119[J].Med Phys,2009,36(11):5359-5373.DOI:10.1118/1.3238104. [5] Tsuruta Y,Nakata M,Nakamura M,et al. Dosimetric comparison of Acuros XB,AAA,and XVMC in stereotactic body radiotherapy for lung cancer[J].Med Phys,2014,41(8):081715.DOI:10.1118/1.4890592. [6] Tao H,Followill D,Mikell J,et al. Dosimetric impact of Acuros XB deterministic radiation transport algorithm for heterogeneous dose calculation in lung cancer[J].Med Phys,2013,40(5):051710.DOI:10.1118/1.4802216. [7] Liu HW,Nugent Z,Clayton R,et al. Clinical impact of using the deterministic patient dose calculation algorithm Acuros XB for lung stereotactic body radiation therapy[J].Acta Oncol,2014,53(3):324-329.DOI:10.3109/0284186X.2013.822552. [8] Readshaw A,Lalonde R,Kim H.SU-E-T-569:comparison of AAA and Acuros dose calculations in a hetergenous phantom[J].Med Phys,2013,40(6):336.DOI:10.1118/1.4814998. [9] Fogliata A,Nicolini G,Clivio A,et al. Critical appraisal of Acuros XB and anisotropic analytic algorithm dose calculation in advanced non-small-cell lung cancer treatments[J].Int J Radiat Oncol Biol Phys,2012,83(5):1587-1595.DOI:10.1016/j.ijrobp.2011.10.078. [10] Chetty IJ,Devpura S,Liu DZ,et al. Correlation of dose computed using different algorithms with local control following stereotactic ablative radiotherapy (SABR)-based treatment of non-small cell lung cancer[J].Radiother Oncol,2013,109(3):498-504.DOI:10.1016/j.radonc.2013.10.012. [11] Caprile PF,Venencia CD,Besa P.Comparison between measured and calculated dynamic wedge dose distributions using the anisotropic analytic algorithm and pencil-beam convolution[J].J Appl Clin Med Phys,2006,8(1):47-54. [12] Kan MWK,Cheung JYC,Leung LHT,et al. The accuracy of dose calculations by anisotropic analytical algorithms for stereotactic radiotherapy in nasopharyngeal carcinoma[J].Phys Med Biol,2010,56(2):397-413.DOI:10.1088/0031-9155/56/2/008. [13] Sempau J,Wilderman SJ,Bielajew AF.DPM,a fast,accurate Monte Carlo code optimized for photon and electron radiotherapy treatment planning dose calculations[J].Phys Med Biol,2000,45(8):2263-2291.DOI:10.1088/0031-9155/45/8/315. [14] Chow JCL,Jiang RQ,Leung MKK.Dosimetry of oblique tangential photon beams calculated by superposition/convolution algorithms:a Monte Carlo evaluation[J].J Appl Clin Med Phys,2011,12(1):3424. [15] 廖雄飞,黎杰,肖明勇,等.笔形束和蒙特卡罗算法在放疗剂量计算中的比较研究[J].中华放射肿瘤学杂志,2015,24(4):364-366.DOI:10.3760/j.issn.1004-4221.2015.04.002. Liao XF,Li J,Xiao MY,et al. Comparative study of Pencil beam and Monte Carlo method in calculation of radiation dose[J].Chin J Radiat Oncol,2015,24(4):364-366.DOI:10.3760/j.issn.1004-4221.2015.04.002. [16] 王佳舟,陈俊超,李龙根,等.Pinnacle与Eclipse计划系统对感兴趣区体积计算的比较[J].中华放射肿瘤学杂志,2011,20(2):156-159.DOI:10.3760/cma.j.issn.1004-4221.2011.02.020. Wang JZ,Chen JC,Li LG,et al. Comparison of region of interest volume between Pinnacle and Eclipse treatment planning system[J].Chin J Radiat Oncol,2011,20(2):156-159.DOI:10.3760/cma.j.issn.1004-4221.2011.02.020. [17] 曹午飞,陈立新,陈利,等.独立验算软件调强放疗质量控制可行性研究[J].中华放射肿瘤学杂志,2011,20(6):521-524.DOI:10.3760/cma.j.issn.1004-4221.2011.06.021. Cao WF,Chen LX,Chen L,et al. The feasibility study of independent check for intensity-modulated radiotherapy[J].Chin J Radiat Oncol,2011,20(6):521-524.DOI:10.3760/cma.j.issn.1004-4221.2011.06.021.