[an error occurred while processing this directive] | [an error occurred while processing this directive]
Dosimetric characterization of a novel dual-energy medical linear accelerator without a flattening filter
Yang Xin,Sun Wenzhao,Chen Li,Luo Guangwen,Lin Mao-sheng,Huang Xiao-yan
State Key Laboratory of Oncology in South China,Collaborative Innovation Center for Caner Medicine,Department of Radiation Therapy,Sun Yat-sen University Cancer Center,Guangzhou 510060,China
AbstractObjective To study the dosimetric characteristics of flattened and flattening filter free (FFF) beams with 6 MV and 10 MV photon energy using a novel dual-energy medical linear accelerator (Elekta Versa HDTM), to identify the dosimetric characteristics and advantages of FFF beams, and to provide a basis for their clinical application. Methods The percentage depth dose (PDD), profiles/dose rate of off-axis ratio (OAR), field size, penumbral width, dose out of the fields, collimator scatter factor (Sc), and total scatter factor (Sc,p) were compared between flattened and FFF beams. Results (1) After beam energy matching, the FFF beams had the same beam energy with the flattened beams. The matching error of PDD at a depth of 10 cm was less than 1% between fields.(2) The FFF beams had a smaller variation in dose rate of OAR with the depth than the flattened beams.(3) The FFF beams had smaller variations in field size and penumbral width than the flattened beams. Moreover, the penumbral width of the FFF beams increased with the increasing field size or depth. The FFF beams had a lower dose out of the fields than the flattened beams.(4) The FFF beams had smaller variations in Sc and Sc,p with the field size and depth than the flattened beams. Conclusions Removal of the flattening filter can substantially improve the dose rate, shorten radiotherapy time, and reduce leakage and scattering of the head. The dosimetric advantages make the FFF beams appropriate for clinical treatment.
Yang Xin,Sun Wenzhao,Chen Li et al. Dosimetric characterization of a novel dual-energy medical linear accelerator without a flattening filter [J]. Chinese Journal of Radiation Oncology, 2017, 26(2): 202-209.
Yang Xin,Sun Wenzhao,Chen Li et al. Dosimetric characterization of a novel dual-energy medical linear accelerator without a flattening filter [J]. Chinese Journal of Radiation Oncology, 2017, 26(2): 202-209.
[1] Ashokkumar S,Nambiraj A,Sinha SN,et al. Measurement and comparison of head scatter factor for 7 MV unflattened (FFF) and 6 MV flattened photon beam using indigenously designed columnar mini phantom[J].Rep Pract Oncol Radiother,2015,20(3):170-180.DOI:10.1016/j.rpor.2015.02.001. [2] Kim BY,Kim HD,Kim DH,et al.6-MV photon beam modeling for the Varian Clinac iX by using the Geant4 virtual jaw[J].J Korean Phys Soc,2015,67(1):147-152.DOI:10.3938/ jkps.67.147. [3] Bezin JV,Veres A,Lefkopoulos D,et al. Field size dependent mapping of medical linear accelerator radiation leakage[J].Phys Med Biol,2015,60(5):2103-2106.DOI:10.1088/0031-155/60/5/2103. [4] Kry SF,Vassiliev ON,Mohan R.Out-of-field photon dose following removal of the flattening filter from a medical accelerator[J].Phys Med Biol,2010,55(8):2155-2166.DOI:10.1088/0031-9155/55/8/003. [5] Murray LJ,Thompson CM,Lilley J,et al. Radiation-induced second primary cancer risks from modern external beam radiotherapy for early prostate cancer:impact of stereotactic ablative radiotherapy (SABR),volumetric modulated arc therapy (VMAT) and flattening filter free (FFF) radiotherapy[J].Phys Med Biol,2015,60(3):1237-1257.DOI:10.1088/0031-9155/60/3/1237. [6] McEwen M,DeWerd L,Ibbott G,et al. Addendum to the AAPM′s TG-51 protocol for clinical reference dosimetry of high-energy photon beams[J].Med Phys,2014,41(4):04150101.DOI:10.1118/1.4866223. [7] Tartar A.Monte Carlo simulation approaches to dose distributions for 6 MV photon beams in clinical linear accelerator[J].Biocybern Biomed Eng,2014,34(2):90-100.DOI:10.1016/j.bbe.2014.01.002. [8] Cashmore J.The characterization of unflattened photon beams from a 6 MV linear accelerator[J].Phys Med Biol,2008,53(7):1933-1946.DOI:10.1088/0031-9155/53/7/009. [9] Fu WH,Dai JR,Hu YM,et al. Delivery time comparison for intensity-modulated radiation therapy with/without flattening filter:a planning study[J].Phys Med Biol,2004,49(8):1535-1547.DOI:10.1088/0031-9155/49/8/011. [10] Hall EJ,Wuu CS.Radiation-induced second cancers:the impact of 3D-CRT and IMRT[J].Int J Radiat Oncol Biol Phys,2003,56(1):83-88.DOI:10.1016/S0360-3016(03)00073-7. [11] Hall EJ.Intensity-modulated radiation therapy,protons,and the risk of second cancers[J].Int J Radiat Oncol Biol Phys,2006,65(1):1-7.DOI:10.1016/j.ijrobp.2006.01.027 [12] Siva S,MacManus MP,Martin RF,et al. Abscopal effects of radiation therapy:a clinical review for the radiobiologist[J].Cancer Lett,2015,356(1):82-90.DOI:10.1016/j.canlet.2013.09.018. [13] Georg D,Kns T,McClean B.Current status and future perspective of flattening filter free photon beamsa)[J].Med Phys,2011,38(3):1280-1293.DOI:10.1118/1.3554643. [14] Vassiliev ON,Titt U,Pnisch F,et al. Dosimetric properties of photon beams from a flattening filter free clinical accelerator[J].Phys Med Biol,2006,51(7):1907-1917.DOI:10.1088/0031-9155/51/7/019 [15] Pnisch F,Titt U,Vassiliev ON,et al. Properties of unflattened photon beams shaped by a multileaf collimator[J].Med Phys,2006,33(6):1738-1746.DOI:10.1118/1.2201149. [16] Titt U,Vassiliev O,Pnisch F,et al. A flattening filter free photon treatment concept evaluation with Monte Carlo[J].Med Phys,2006,33(6):1595-1602.DOI:10.1118/ 1.2198327. [17] Javedan K,Feygelman V,Zhang RR,et al. Monte Carlo comparison of superficial dose between flattening filter free and flattened beams[J].Phys Med,2014,30(4):503-508.DOI:10.1016/j.ejmp.2014.03.001. [18] Mesbahi A.A Monte Carlo study on neutron and electron contamination of an unflattened 18-MV photon beam[J].Appl Radiat Isot,2009,67(1):55-60.DOI:10.1016/j.apradiso.2008.07.013. [19] Najem MA,Abolaban FA,Podolyák Z,et al. Neutron production from flattening filter free high energy medical linac:a Monte Carlo study[J].Radiat Phys Chem,2015,116:176-180.DOI:10.1016/j.radphyschem.2015.01.040. [20] Tsiamas P,Sajo E,Cifter F,et al. Beam quality and dose perturbation of 6 MV flattening-filter-free linac[J].Phys Med,2014,30(1):47-56.DOI:10.1016/j.ejmp.2013.02.004. [21] Chung H,Prado KL,Yi BY.An analytical formalism to calculate phantom scatter factors for flattening filter free (FFF) mode photon beams[J].Phys Med Biol,2014,59(4):951-960.DOI:10.1088/0031-9155/59/4/951. [22] Paynter D,Weston SJ,Cosgrove VP,et al. Beam characteristics of energy-matched flattening filter free beams[J].Med Phys,2014,41(5):052103.DOI:10.1118/1.4871615. [23] Xiao Y,Kry SF,Popple R,et al. Flattening filter-free accelerators:a report from the AAPM Therapy Emerging Technology Assessment Work Group[J].J Appl Clin Med Phys,2015,16(3):5219.DOI:10.1120/jacmp.v16i3.5219. [24] Fogliata A,Garcia R,Kns T,et al. Definition of parameters for quality assurance of flattening filter free (FFF) photon beams in radiation therapy[J].Med Phys,2012,39(10):6455-6464.DOI:10.1118/1.4754799. [25] Almberg SS,Frengen J,Lindmo T.Monte Carlo study of in-field and out-of-field dose distributions from a linear accelerator operating with and without a flattening-filter[J].Med Phys,2012,39(8):5194-5203.DOI:10.1118/1.4738963. [26] Muralidhar KR,Rout BK,Ramesh KKD,et al. Small field dosimetry and analysis of flattening filter free beams in true beam system[J].J Cancer Res Ther,2015,11(1):136-140.DOI:10.4103/0973-1482.138226. [27] 陈勇,倪婕,陈秋秋,等.直线加速器散射校正因子的蒙特卡罗计算[J].辐射研究与辐射工艺学报,2011,29(6):359-364. Chen Y,Ni J,Chen QQ,et al. Calculation of scatter calibrate factor for accelerator of SIMENS with Monte-Carlo method[J].J Radiat Res Radiat Proc,2011,29(6):359-364. [28] Kragl G,af Wetterstedt S,Knusl B,et al. Dosimetric characteristics of 6 and 10 MV unflattened photon beams[J].Radiother Oncol,2009,93(1):141-146.DOI:10.1016/ j.radonc.2009.06.008. [29] Fogliata A,Fleckenstein J,Schneider F,et al. Flattening filter free beams from TrueBeam and Versa HD units:evaluation of the parameters for quality assurance[J].Med Phys,2016,43(1):205-212.DOI:10.1118/1.4938060. [30] Klein EE,Hanley J,Bayouth J,et al. Task Group 142 report:quality assurance of medical accelerators[J].Med Phys,2009,36(9):4197-4212.DOI:10.1118/1.3190392. [31] Lechner W,Palmans H,Slkner L,et al. Detector comparison for small field output factor measurements in flattening filter free photon beams[J].Radiother Oncol,2013,109(3):356-360.DOI:10.1016/j.radonc.2013.10.022. [32] Wang YN,Khan MK,Ting JY,et al. Surface dose investigation of the flattening filter-free photon beams[J].Int J Radiat Oncol Biol Phys,2012,83(2):e281-285.DOI:10.1016/ j.ijrobp.2011.12.064. [33] Hrbacek J,Lang S,Klck S.Commissioning of photon beams of a flattening filter-free linear accelerator and the accuracy of beam modeling using an anisotropic analytical algorithm[J].Int J Radiat Oncol Biol Phys,2011,80(4):1228-1237.DOI:10.1016/j.ijrobp.2010.09.050.