[1] Blamek S,Grzadziel A,Miszczyk L.Robotic radiosurgery versus micro-multileaf collimator:a dosimetric comparison for large or critically located arteriovenous malformations[J].Radiat Oncol,2013,8:205.DOI:10.1186/1748-717X-8-205.
[2] Fogh S,Ma L,Gupta N,et al. High-precision volume-staged Gamma Knife surgery and equivalent hypofractionation dose schedules for treating large arteriovenous malformations[J].J Neurosurg,2012,117Suppl.:115-119.DOI:10.3171/2012.7.GKS121023.
[3] Blamek S, Larysz D, Miszczyk L, et al. Hypofractionated stereotactic radiotherapy for large or involving critical organs cerebral arteriovenous malformations. Radiol Oncol 2013,47:50–56.
[4] Gevaert T,Levivier M,Lacornerie T,et al. Dosimetric comparison of different treatment modalities for stereotactic radiosurgery of arteriovenous malformations and acoustic neuromas[J].Radiother Oncol,2013,106(2):192-197.DOI:10.1016/j.radonc.2012.07.002.
[5] Mindermann T.Gamma Knife,CyberKnife or micro-multileaf collimator LINAC for intracranial radiosurgery?[J].Acta Neurochir,2015,157(4):557-558.DOI:10.1007/s00701-015-2351-6.
[6] Dutta D,Subramanian SB,Muli V,et al. Dosimetric comparison of Linac-based (BrainLAB) and robotic radiosurgery (CyberKnife ) stereotactic system plans for acoustic schwannoma[J].J Neurooncol,2012,106(3):637-642.DOI:10.1007/s11060-011-0703-5.
[7] Wowra B,Muacevic A,Tonn JC.Quality of radiosurgery for single brain metastases with respect to treatment technology:a matched-pair analysis[J].J Neurooncol,2009,94:69.DOI:10.1007/s11060-009-9802-y.
[8] Descovich M,Sneed PK,Barbaro NM,et al. A dosimetric comparison between Gamma Knife and CyberKnife treatment plans for trigeminal neuralgia[J].J Neurosurg,2010,113 Suppl.:199-206.
[9] Echner GG,Kilby W,Lee M,et al. The design,physical properties and clinical utility of an iris collimator for robotic radiosurgery[J].Phys Med Biol,2009,54(18):5359-5380.DOI:10.1088/0031-9155/54/18/001.
[10] Timmerman RD.An overview of hypofractionation and introduction to this issue of Seminars in Radiation oncology[J].Semin Radiat Oncol,2008,18(4):215-222.DOI:10.1016/j.semradonc.2008.04.001.
[11] Feuvret L,No ёl G,Mazeron JJ,et al. Conformity index:a review[J].Int J Radiat Oncol Biol Phys,2006,64(2):333-342.DOI:10.1016/j.ijrobp.2005.09.028.
[12] Kataria T,Sharma K,Subramani V,et al. Homogeneity Index:an objective tool for assessment of conformal radiation treatments[J].J Med Phys,2012,37(4):207-213.DOI:10.4103/0971-6203.103606.
[13] Paddick I,Lippitz B.A simple dose gradient measurement tool to complement the conformity index[J].J Neurosurg,2006,105 Suppl.:194-201.DOI:10.3171/sup.2006.105.7.194.
[14] Wagner TH,Bova FJ,Friedman WA,et al. A simple and reliable index for scoring rival stereotactic radiosurgery plans[J].Int J Radiat Oncol Biol Phys,2003,57(4):1141-1149.DOI:10.1016/S0360-3016(03)01563-3.
[15] Di Betta E,Fariselli L,Bergantin A,et al. Evaluation of the peripheral dose in stereotactic radiotherapy and radiosurgery treatments[J].Med Phys,2010,37(7):3587-3594.DOI:10.1118/1.3447724.
[16] Vlachopoulou V,Antypas C,Delis H,et al. Peripheral doses in patients undergoing Cyberknife treatment for intracranial lesions. A single centre experience[J].Radiat Oncol,2011,6:157.DOI:10.1186/1748-717X-6-157.
[17] Ma LJ,Nichol A,Hossain S,et al. Variable dose interplay effects across radiosurgical apparatus in treating MU ltiple brain metastases[J].Int J Comput Assist Radiol Surg,2014,9(6):1079-1086.DOI:10.1007/s11548-014-1001-4.
[18] 朴俊杰,徐寿平,巩汉顺,等.CyberKnife系统技术评估和临床应用评价[J].医疗卫生装备,2016,37(3):114-117.DOI:10.7687/J.ISSN1003-8868.2016.03.114.
Piao JJ,Xu SP,Gong HS,et al. Assessment of technology and clinical application of CyberKnife system[J].Chin Med Equip J,2016,37(3):114-117.DOI:10.7687/J.ISSN1003-8868.2016.03.114.
[19] P ll JJ,Hoogeman MS,Prévost JB,et al. Reducing monitor units for robotic radiosurgery by optimized use of MUltiple collimators[J].Med Phys,2008,35(6):2294-2299.DOI:10.1118/1.2919090. |