[an error occurred while processing this directive] | [an error occurred while processing this directive]
Research progress of functional magnetic resonance imaging in radiation-induced brain injury after head and neck carcinoma radiotherapy
Li Junchen,Li Guohua,Tian Ye,Hu Chunhong
Department of Radiology,First Affiliated Hospital of Soochow University,Suzhou 215006,China (Li JCH);Department of Radiology,Changshu Hospital of Traditional Chinese Medicine;Changshu Affiliated Hospital of Nanjing University,Changshu 215500,China (Li GH);Department of Radiation Oncology,Second Affiliated Hospital of Soochow University,Suzhou 215006,China (Tian Y)
Abstract Radiation-induced brain injury is a common adverse reaction to radiotherapy for head and neck carcinoma, and may develop into radiation-induced brain necrosis in some patients. The disease has a substantial impact on the quality of life and 5-year survival in patients. Early diagnosis and prevention are important for the clinical treatment of radiation-induced brain injury. On the other hand, recurrence and pseudoprogression as complications of malignant tumor radiotherapy are also key problems for clinical diagnosis and identification of radiation-induced brain injury. Magnetic resonance imaging (MRI), especially functional MRI, provides an important approach for basic and clinical studies of radiation-induced brain injury.
Corresponding Authors:
Hu Chunhong,Email:hch5305@163.com;Tian Ye,Email:dryetian@hotmail.com
Cite this article:
Li Junchen,Li Guohua,Tian Ye et al. Research progress of functional magnetic resonance imaging in radiation-induced brain injury after head and neck carcinoma radiotherapy[J]. Chinese Journal of Radiation Oncology, 2017, 26(1): 98-102.
Li Junchen,Li Guohua,Tian Ye et al. Research progress of functional magnetic resonance imaging in radiation-induced brain injury after head and neck carcinoma radiotherapy[J]. Chinese Journal of Radiation Oncology, 2017, 26(1): 98-102.
[1] Kim YH,Oh SW,Lim YJ,et al. Differentiating radiation necrosis from tumor recurrence in high-grade gliomas:assessing the efficacy of 18F-FDG PET,11C-methionine PET and perfusion MRI[J].Clin Neurol Neurosurg,2010,112(9):758-765.DOI:10.1016/j.clineuro.2010.06.005. [2] Wang SL,Tryggestad E,Zhou TT,et al. Assessment of MRI parameters as imaging biomarkers for radiation necrosis in the rat brain[J].Int J Radiat Oncol Biol Phys,2012,83(3):e431-e436.DOI:10.1016/j.ijrobp.2011.12.087. [3] Chen J,Dassarath M,Yin ZY,et al. Radiation induced temporal lobe necrosis in patients with nasopharyngeal carcinoma:a review of new avenues in its management[J].Radiat Oncol,2011,6:128.DOI:10.1186/1748-717X-6-128. [4] Mou YG,Sai K,Wang ZN,et al. Surgical management of radiation-induced temporal lobe necrosis in patients with nasopharyngeal carcinoma:report of 14 cases[J].Head Neck,2010,33(10):1493-1500.DOI:10.1002/hed.21639. [5] Van Tassel P,Bruner JM,Maor MH,et al. MR of toxic effects of accelerated fractionation radiation therapy and carboplatin chemotherapy for malignant gliomas[J].AJNR Am J Neuroradiol,1995,16(4):715-726. [6] Stockham AL,Tievsky AL,Koyfman SA,et al. Conventional MRI does not reliably distinguish radiation necrosis from tumor recurrence after stereotactic radiosurgery[J].J Neurooncol,2012,109(1):149-158.DOI:10.1007/s11060-012-0881-9. [7] Kano H,Kondziolka D,Lobato-Polo J,et al. T1/T2 matching to differentiate tumor growth from radiation effects after stereotactic radiosurgery[J].Neurosurgery,2010,66(3):486-491.DOI:10.1227/01.NEU.0000360391.35749.A5. [8] Leeman JE,Clump DA,Flickinger JC,et al. Extent of perilesional edema differentiates radionecrosis from tumor recurrence following stereotactic radiosurgery for brain metastases[J].Neuro Oncol,2013,15(12):1732-1738.DOI:10.1093/neuonc/not130. [9] King AD,Mo FKF,Yu KH,et al. Squamous cell carcinoma of the head and neck:diffusion-weighted MR imaging for prediction and monitoring of treatment response[J].Eur Radiol,2010,20(9):2213-2220.DOI:10.1007/s00330-010-1769-8. [10] 陈学文,雨华,付飞先,等.鼻咽癌放疗后早期放射性脑损伤的磁共振扩散加权成像研究[J].实用医学影像杂志,2014,15(5):305-307. Chen XW,Yu H,Fu XF,et al. Magnetic resonance diffusion weighted imaging of radiation-induced brain injury in patients with nasopharyngeal carcinoma after radiotherapy[J].J Pract Med Imag,2014,15(5):305-307. [11] Jiang XY,Perez-Torres CJ,Thotala D,et al. A GSK-3β inhibitor protects against radiation necrosis in mouse brain[J].Int J Radiat Oncol Biol Phys,2014,89(4):714-721.DOI:10.1016/j.ijrobp.2014.04.018. [12] Shemesh N,Sadan O,Melamed E,et al. Longitudinal MRI and MRSI characterization of the quinolinic acid rat model for excitotoxicity:peculiar apparent diffusion coefficients and recovery of N-acetyl aspartate levels[J].NMR Biomed,2010,23(2):196-206.DOI:10.1002/nbm.1443. [13] Xiong WF,Qiu SJ,Wang HZ,et al.1H-MR spectroscopy and diffusion tensor imaging of normal-appearing temporal white matter in patients with nasopharyngeal carcinoma after irradiation:initial experience[J].J Magn Reson Imaging,2013,37(1):101-108.DOI:10.1002/jmri.23788. [14] Wang HZ,Qiu SJ,L XF,et al. Diffusion tensor imaging and 1H-MRS study on radiation-induced brain injury after nasopharyngeal carcinoma radiotherapy[J].Clin Radiol,2012,67:340-345.DOI: [15] Chapman CH,Nagesh V,Sundgren PC,et al. Diffusion tensor imaging of normal-appearing white matter as biomarker for radiation-induced late delayed cognitive decline[J].Int J Radiat Oncol Biol Phys,2012,82(5):2033-2040.DOI:10.1016/j.ijrobp.2011.01.068. [16] Caroline I,Rosenthal MA.Imaging modalities in high-grade gliomas:pseudoprogression,recurrence,or necrosis?[J].J Clin Neurosci,2012,19(5):633-637.DOI:10.1016/j.jocn.2011.10.003. [17] Yoshii Y,Sugimoto K,Fujiwara K.Progressive enlargement of a mass lesion in late cerebral radionecrosis[J].J Clin Neurosci,2011,18(6):853-855.DOI:10.1016/j.jocn.2010.08.041. [18] Shen CY,Tyan YS,Kuo LW,et al. Quantitative evaluation of rabbit brain injury after cerebral hemisphere radiation exposure using generalized q-sampling imaging[J].PLoS One,2015,10(7):e0133001.DOI:10.1371/journal.pone.0133001. [19] Robbins ME,Brunso-Bechtold JK,Peiffer AM,et al. Imaging radiation-induced normal tissue injury[J].Radiat Res,2012,177(4):449-466. [20] Shah AH,Snelling B,Bregy A,et al. Discriminating radiation necrosis from tumor progression in gliomas:a systematic review what is the best imaging modality?[J].J Neurooncol,2013,112(2):141-152.DOI:10.1007/s11060-013-1059-9. [21] Peiffer AM,Shi L,Olson J,et al. Differential effects of radiation and age on diffusion tensor imaging in rats[J].Brain Res,2010,1351:23-31.DOI:10.1016/j.brainres.2010.06.049. [22] Li H,Li JP,Lin CG,et al. An experimental study on acute brain radiation injury:dynamic changes in proton magnetic resonance spectroscopy and the correlation with histopathology[J].Eur J Radiol,2012,81(11):3496-3503.DOI:10.1016/j.ejrad.2012.03.011. [23] Shi L,Olson J,D’Agostino R Jr,et al. Aging masks detection of radiation-induced brain injury[J].Brain Res,2011,1385:307-316.DOI:10.1016/j.brainres.2011.02.034. [24] Xu JL,Shi DP,Dou SW,et al. Distinction between postoperative recurrent glioma and delayed radiation injury using MR perfusion weighted imaging[J].J Med Imaging Radiat Oncol,2011,55(6):587-594.DOI:10.1111/j.1754-9485.2011.02315.x. [25] Wong ST,Loo KT,Yam KY et al. Results of excision of cerebral radionecrosis:experience in patients treated with radiation therapy for nasopharyngeal carcinoma[J].J Neurosurg,2010,113(2):293-300.DOI:10.3171/2010.1.JNS091039. [26] Ye JH,Rong XM,Xiang YQ,et al. A study of radiation-induced cerebral vascular injury in nasopharyngeal carcinoma patients with radiation-induced temporal lobe necrosis[J].PLoS One,2012,7(8):e42890.DOI:10.1371/journal.pone.0042890. [27] Beaudreau SA,MacKay-Brandt A,Reynolds J.Application of a cognitive neuroscience perspective of cognitive control to late-life anxiety[J].J Anxiety Disord,2013,27(6):559-566.DOI:10.1016/j.janxdis.2013.03.006. [28] Greene-Schloesser D,Robbins ME.Radiation-induced cognitive impairment-from bench to bedside[J].Neuro Oncol,2012,14(S4):iv37-iv44.DOI:10.1093/neuonc/nos196. [29] Robbins ME,Zhao W,Garcia-Espinosa MA,et al. Renin-angiotensin system blockers and modulation of radiation-induced brain injury[J].Curr Drug Targets,2010,11(11):1413-1422. [30] Zou P,Mulhern RK,Butler RW,et al. BOLD responses to visual stimulation in survivors of childhood cancer[J].NeuroImage,2005,24(1):61-69.DOI:10.1016/j.neuroimage.2004.08.030. [31] Lu XF,Zheng XL,Zhang WD,et al. Radiation-induced changes in normal-appearing gray matter in patients with nasopharyngeal carcinoma:a magnetic resonance imaging voxel-based morphometry study[J].Neuroradiology,2014,56(5):423-430.DOI:10.1007/s00234-014-1338-y. [32] Dashjamts T,Yoshiura T,Hiwatashi A,et al. Alzheimer's disease:diagnosis by different methods of voxel-based morphometry[J].Fukuoka Igaku Zasshi,2012,103(3):59-69.