Abstract Objective To explore the application of the electronic portal imaging device (EPID) to test on MLC leaves position accuracy instead of EBT3 film, and the feasibility analysis under any gantry angle. Methods RIT113 software was used to analyze the image data of radiochromic film EBT3 and EPID of Siemens ARTISTE accelerator. The replacement process from EBT3 film to EPID for the test MLC leaves positioning was completed by defining the positions of 50% isodose curve of the field edge of EBT3 after radiation as the actual positions of MLC leaves, therefore finding out the percentage isodose value of the same position in the EPID portal imaging from the corresponding radiation field. Results When the accelerator gantry angle was 0, the mean percentage isodose value was 44% at the MLC leaves positions determined by EBT3, and the maximum position error of MLC leaves is 0.12 mm. When the accelerator gantry was any other angles, the results were compared with the zero angle situation through DTA, all of the points passed when the DTA radium was 0.5 mm. Conclusions Using EPID instead of EBT3 to do the test MLC leaves positioning is feasible, furthermore, it is suitable under any gantry angle with excellent accuracy for the clinical practive, which deserves to be widely spread.
Cao Zheng*,Li Hongxia,Bao Yangyi et al. The study of electronic portal imaging devices for the position accuracy of multi-leaf collimator instead of the film[J]. Chinese Journal of Radiation Oncology, 2015, 24(5): 573-574.
Cao Zheng*,Li Hongxia,Bao Yangyi et al. The study of electronic portal imaging devices for the position accuracy of multi-leaf collimator instead of the film[J]. Chinese Journal of Radiation Oncology, 2015, 24(5): 573-574.
[1] 胡逸民.肿瘤放射物理学[M].北京:原子能出版社,1999. [2] 戴建荣,胡逸民.电子射野影像系统[J].中国医学物理杂志, 1999,16(4):204-208. [3] Esch AT,Depuydt T,Huyskens DP,et al. The use of an aSi-based EPID for routine absolute dosimetric pre-treatment verification of dynamic IMRT fields[J]. Radiother Oncol,2004,71(2):223-234. DOI:10.1016/j.radonc. 2004.02.018. [4] McDermott LN,Wendling M,Nijkamp J,et al.3D in vivo dose verification of entire hypo-fractionated IMRT treatments using an EPID and cone-beam CT[J]. Radiother Oncol,2008,86(1):35-42. DOI:10.1016/j.radonc.2007.11. 010. [5] Yang Y, Xing L. Quantitative measurement of MLC leaf displacement using an electronic portal imaging device[J]. Phys Med Biol,2004, 49(8),1521-1533. DOI:10.1088/0031-9155/49/8/010. [6] Mu G, Ludlum E, Xia P. Impact of MLC leaf position errors on simple and complex IMRT plans for head and neck cancer[J]. Phys. Med. Biol. 2008, 53(1):77-88. DOI:10. 1088/0031-9155/53/1/005. [7] Van Dyk J, Barnett RB, Cygler JE, et al. Commissioning and quality assurance of treatment planning computers[J]. Int J Radiat Oncol Biol Phys. 1993, 26(2):261-273. DOI:10.1016/0360-3016(93)90206-Bquality. [8] Wambersie A, Landgerg T. ICRU Report 62:prescribing, recording and reporting photon beam therapy[R]. Bethesda:ICRU,1999. [9] McCurdy BM, Luchka K, Pistorius S. DOsimetric investigation and portal dose image prediction using an amorphous silicon electronic portal imaging device[J]. Med Phy,2001,28(6):911-924. DOI:10.1118/1.1374244. [10] Chen J,Chuang CF, Morin O,et al. Calibration of an amorphous silicon flat panel portal imager for exit-beam dosimetry[J]. Med Phys, 2006, 33(3):584-594. DOI:10. 1118/ 1.2168294. [11] Juste B,Miro R, Diez S, et al. Monte Carlo simulation of the iView GT portal imager dosimetry[J]. Appl Radiat Isotopes, 2010, 68(4-5):922-925. DOI:10.1016/j.apradiso.2009.10.051. [12] Sastre-Padro M, van der-Heide UA, Welleweerd H. An accurate calibration method of the multileaf collimator valid for conformal and intensity modulated radiation treatments[J]. Phys Med Biol, 2004, 49(12):263-264. DOI:10.1088/0031-9155/49/12/011. [13] 付庆国, 杨超凤, 杨海明,等 3种方法验证多叶光栅到位精度的比较[J]. 中国癌症防治杂志, 2011, 3(3):248. DOI:10.3969/j.issn.1674-5671.2011.03.20.