[an error occurred while processing this directive] | [an error occurred while processing this directive]
Research progress on radiation-resistant and radiation-sensitive proteomics in glioma stem cells
Zhang Shanshan1, Shen Yuntian1, Fan Qiuhong1, Tian Ye1, Huang Qiang2
1Department of Radiotherapy,Second Affiliated Hospital of Soochow University,Suzhou 215004,China; 2Department of Neurosurgery,Second Affiliated Hospital of Soochow University,Suzhou 215004,China
Abstract After multidisciplinary treatment including radiotherapy, the median survival of patients with glioblastoma multiforme (GBM) remains approximately 1 year. The heterogeneity of the genome and proteome of glioblastoma stem cells (GSC) is the fundamental factor affecting the prognosis. Proteomics-based sensitization of key radioresistance proteins is expected to improve the prognosis of GBM patients. In this article, literature review was conducted from PubMed and other databases in the previous 10 years to systematically discuss the research progress on various commonly used protein quantitative techniques, tools for data processing analysis and the application in radioresistance and radiosensitization of GSCs.
Fund:Jiangsu Young Medical Talents (QNRC2016859);Jiangsu Medical Innovation Team (CXTDA2017037);Suzhou Clinical Medical Center Construction Project (Szzxj201503)
Zhang Shanshan,Shen Yuntian,Fan Qiuhong et al. Research progress on radiation-resistant and radiation-sensitive proteomics in glioma stem cells[J]. Chinese Journal of Radiation Oncology, 2020, 29(2): 150-153.
Zhang Shanshan,Shen Yuntian,Fan Qiuhong et al. Research progress on radiation-resistant and radiation-sensitive proteomics in glioma stem cells[J]. Chinese Journal of Radiation Oncology, 2020, 29(2): 150-153.
[1] Davis FG,Freels S,Grutsch J,et al. Survival rates in patients with primary malignant brain tumors stratified by patient age and tumor histological type:an analysis based on Surveillance,Epidemiology,and End Results (SEER) data,1973–1991[J]. J Neurosurg,1998,88(1):1-10. DOI:10.3171/jns.1998.88.1.0001.
[2] Stupp R,Hegi ME,Mason WP,et al. Effects of radiotherapy with concomitant and adjuvant temozolomide versus radiotherapy alone on survival in glioblastoma in a randomised phase Ⅲ study:5-year analysis of the EORTC-NCIC trial.[J]. Lancet Oncol,2009,10(5):459-466. DOI:10.1016/S1470.
[3] Tsien CI,Brown D,Normolle D,et al. Concurrent temozolomide and dose-escalated intensity-modulated radiation therapy in newly diagnosed glioblastoma[J]. Clin Cancer Res,2012,18(1):273-279. DOI:10.1158/1078-0432. CCR-11-2073.
[4] Shirai K,Siedow MR,Chakravarti A. Antiangiogenic therapy for patients with recurrent and newly diagnosed malignant gliomas[J]. J Oncol,2012:1-12. DOI:10.1155/2012/193436.
[5] Yasuda T,Muragaki Y,Nitta M,et al. Effectiveness of stereotactic radiotherapy and bevacizumab for recurrent highgrade gliomas:a potential therapy for IDH wildtype recurrent high grade gliomas[J]. World Neurosurg,2018,DOI:10.1016/j.wneu.2018.03.161.
[6] Fogh SE,Andrews DW,Glass J,et al. Hypofractionated stereotactic radiation therapy:an effective therapy for recurrent high-grade gliomas[J]. J Clin Oncol,2010,28(18):3048-3053. DOI:10.1200/JCO.2009.25.6941.
[7] Zhao YD,Zhang QB,Chen H,et al. Research on human glioma stem cells in China[J]. Neural Regen Res,2017,12(11):1918-1926. DOI:10.4103/1673-5374.219055.
[8] Anderson N, Anderson N. Proteome and proteomics:new technologies,new concepts,and new words[J]. Electrophoresis,1998,19(11):1853-1861. DOI:10.1002/elps.1150191103.
[9] Rapkiewicz A,Espina V,Zujewski JA,et al. The needle in the haystack:application of breast fine-needle aspirate samples to quantitative protein microarray technology[J]. Cancer,2007,111(3):173-184. DOI:10.1002/cncr.22686.
[10] Donnelly DP,Rawlins CM,Dehart CJ,et al. Best practices and benchmarks for intact protein analysis for top-down mass spectrometry[J]. Nat Methods,2019,16(7):587-594. DOI:10.1038/s41592-019-0457-0.
[11] Liu MQ,Zeng WF,Fang P,et al.pGlyco 2.0 enables precision N-glycoproteomics with comprehensive quality control and one-step mass spectrometry for intact glycopeptide identification[J]. Nat Commun,2017,8(1):438. DOI:10.1038/s41467-017-00535-2.
[12] Kyoungho S. Proteomic analysis of glioma chemoresistance.[J]. Curr Neuropharmacol,2012,10(1):72-79. DOI:10.2174/157015912799362733.
[13] Tanase C,Enciu A,Mihai S,et al. Anti-cancer Therapies in High Grade Gliomas.[J]. Curr Proteom,2013,10(2):246-260. DOI:10.2174/1570164611310030007.
[14] Deighton RF,Mcgregor R,Kemp J,et al. Glioma pathophysiology:insights emerging from proteomics[J]. Brain Pathol,2010,20(4):691-703. DOI:10.1111/j.1750-3639.2010.00376.x.
[15] Lichti CF,Mostovenko E,Wadsworth PA,et al. Systematic identification of single amino acid variants in glioma stem-cell-derived chromosome 19 proteins[J]. J Proteome Res,2015,14(2):778-786. DOI:10.1021/pr500810g.
[16] Mostovenko E,Vegvari A,Rezeli M,et al. Large Scale Identification of Variant Proteins in Glioma Stem Cells[J]. ACS Chem Neurosci,2018,9(1):73-79. DOI:10.1021/acschemneuro.7b00362.
[17] Bao S,Wu Q,Mclendon RE,et al. Glioma stem cells promote radioresistance by preferential activation of the DNA damage response[J]. Nature,2006,444(7120):756-760. DOI:10.1038/nature05236.
[18] Wang Y,Xu H,Liu T,et al. Temporal DNA-PK activation drives genomic instability and therapy resistance in glioma stem cells[J]. JCI Insight,2018,3(3):e98096. DOI:DOI:10.1172/jci.insight.98096.
[19] Carruthers R,Ahmed SU,Strathdee K,et al. Abrogation of radioresistance in glioblastoma stem-like cells by inhibition of ATM kinase[J]. Mol Oncol,2015,9(1):192-203. DOI:10.1016/j.molonc.2014.08.003.
[20] Maachani UB,Shankavaram U,Kramp T,et al. FOXM1 and STAT3 interaction confers glioblastoma cells[J]. Oncotarget,2016,22(47):77365-77377. DOI:10.18632/oncotarget.12670.
[21] Zhuang W,Li B,Long L,et al. Induction of autophagy promotes differentiation of glioma-initiating cells and their radiosensitivity[J]. Int J Cancer,2011,129(11):2720-2731. DOI:10.1002/ijc.25975.
[22] Zhuang W,Li B,Long L,et al. Knockdown of the DNA-dependent protein kinase catalytic subunit radiosensitizes glioma-initiating cells by inducing autophagy[J]. Brain Res,2011,1371:7-15. DOI:10.1016/j.brainres.2010.11.044.
[23] Zou H,Zhao S,Zhang J,et al. Enhanced radiation-induced cytotoxic effect by 2-ME in glioma cells is mediated by induction of cell cycle arrest and DNA damage via activation of ATM pathways[J]. Brain Res,2007,1185(2):231-238. DOI:10.1016/j.brainres.2007.07.092.
[24] Tsai RY. A molecular view of stem cell and cancer cell self-renewal[J]. Int J Biochem Cell Biol,2004,36(4):684-694. DOI:10.1016/j.biocel.2003.10.016.
[25] He J,Shan Z,Li L,et al. Expression of glioma stem cell marker CD133 and O6-methylguanine-DNA methyltransferase is associated with resistance to radiotherapy in gliomas[J]. Oncol Rep,2011,26(5):1305-1313. DOI:10.3892/or.2011.1393.
[26] Yang W,Liu Y,Gao R,et al. HDAC6 inhibition induces glioma stem cells differentiation and enhances cellular radiation sensitivity through the SHH/Gli1 signaling pathway[J]. Cancer Lett,2018,28(1):164-176. DOI:10.1016/j.
[27] Svendsen AC,Verhoeff JJ,Immervoll H,et al. Expression of the progenitor marker NG2/CSPG4 predicts poor survival and resistance to ionising radiation in glioblastoma[J]. Acta Neuropathol,2011,122(3):495-510. DOI:10.1007/s00401-011-0867-2.
[28] Smith R,Wang J,Seymour C,et al. Homogenous and microbeam X-ray radiation induces proteomic changes in the brains of irradiated rats and in the brains of nonirradiated cage mate rats[J]. Dose Response,2018,16(1):1559325817750068. DOI:10.1177/1559325817750068.
[29] Cleland TP,Dehart CJ,Fellers RT,et al. High-throughput analysis of intact human proteins using UVPD and HCD on an orbitrap mass spectrometer[J]. J Proteome Res,2017,16(5):2072-2079. DOI:10.1021/acs.jproteome.7b00043.