AbstractObjective To study a lung dose prediction method for the early stage non-small cell lung cancer (NSCLC) treated with stereotactic body radiotherapy based on machine learning algorithm,and to evaluate the feasibility of application in planning quality assurance. Methods A machine learning algorithm was utilized to achieve DVH prediction. First, an expert plan dataset with 125 cases was built,and the geometric features of ROI,beam angle anddose-volume histogram(DVH) parameters in the dataset were extracted. Following a correlation model was established between the features and DVHs. Second,the geometric and beam features from 10 cases outside the training pool were extracted,and the model was adopted to predict the achievable DVHs values of the lung. The predicted DVHs values were compared with the actual planned results. Results The mean squared errors of external validation for the 10 cases inmean lung dose (MLD)MLD and V20 of the lung were 91.95 cGy and 3.12%,respectively. Two cases whose lungdoseswere higher than the predicted values were re-planned,and the results showed that the the lung doses were reduced. Conclusion It is feasible to utilize the anatomy and beam angle features to predict the lung DVH parameters for plan evaluation and quality assurance in early stage NSCLC patients treated with stereotactic body radiotherapy
Fund:The National Key Research and Development Projects (2017YFC0113201);The Medical and Health Science and Technology Projects in Zhejiang Province (2017PY013, 2018PY005)
Corresponding Authors:
Wang Binbing,Email:wangbb@zjcc.org.cn
Cite this article:
Bai Xue,Wang Binbing,Shao Kainan et al. A study of prediction model of lung dose in early stage non-small cell lung cancer with stereotactic body radiotherapy[J]. Chinese Journal of Radiation Oncology, 2020, 29(2): 106-110.
Bai Xue,Wang Binbing,Shao Kainan et al. A study of prediction model of lung dose in early stage non-small cell lung cancer with stereotactic body radiotherapy[J]. Chinese Journal of Radiation Oncology, 2020, 29(2): 106-110.
[1] 徐裕金,马红莲,白雪,等. CBCT图像引导下SBRT治疗肺部原发灶或转移灶的初步研究[J]. 中国肿瘤,2014,23(4):338-341. DOI:10.11735/j.issn.1004-0242.2014.04. A014.
Xu YJ,Ma Hl,Bai X,et al. Stereotactic body radiation therapy guided by cone beam computed tomography for primary or metastatic lung malignancy[J]. Chin Cancer,2014,23(4):338-341. DOI:10.11735/j.issn.1004-0242.2014.04. A014.
[2] 董百强,徐裕金,孙晓江,等.200例肺部肿瘤SBRT的经验和疗效[J]. 中华放射肿瘤学杂志,2017,26(6):627-630. DOI:10.3760/cma.j.issn.1004-4221.2017.06.004.
Dong BQ,Xu YJ,Sun XJ,et al. Experience and efficacy of SBRT for lung cancer:an analysis of 200 patients[J]. Chin J Radiat Oncol,2017,26(6):627-630. DOI:10.3760/cma.j.issn.1004-4221.2017.06.004.
[3] 董百强,陈明. 立体定向放疗在非小细胞肺癌治疗中的应用[J]. 中华放射医学与防护杂志,2016,36(10):732-735. DOI:10.3760/cma.j.issn.0254-5098.2016.10.003.
Dong BQ,Chen M. The application of stereotactic body radiotherapy in treatment of non-small cell lung cancer[J]. Chin J Radiol Med Prevent,2016,36(10):732-735. DOI:10.3760/cma.j.issn.0254-5098.2016.10.003.
[4] Moustakis C,Blanck O,Ebrahimi TF,et al. Planning benchmark study for SBRT of early stage NSCLC:Results of the DEGRO working group stereotactic radiotherapy[J]. Strahlenther Onkol,2017,193(10):780-790. DOI:10.1007/s00066-017-1151-8.
[5] Hoopes DJ,Johnstone PA,Chapin PS,et al. Practice patterns for peer review in radiation oncology[J]. Pract Radiat Oncol,2015,5(1):32-38. DOI:10.1016/j.prro.2014.04.004.
[6] Hunt MA,Jackson A,Narayana A,et al. Geometric factors influencing dosimetric sparing of the parotid glands using IMRT[J]. Int J Radiat Oncol Biol Phys,2006,66(1):296-304. DOI:10.1016/j.ijrobp.2006.05.028.
[7] Reddy NM,Nori D,Chang H,et al. Prostate and seminal vesicle volume based consideration of prostate cancer patients for treatment with 3D-conformal or intensity-modulated radiation therapy[J]. Med Phys,2010,37(7):3791-3801. DOI:10.1118/1.3451125.
[8] Moore KL,Brame RS,Low DA,et al. Experience-based quality control of clinical intensity-modulated radiotherapy planning[J]. Int J Radiat Oncol Biol Phys,2011,81(2):545-551. DOI:10.1016/j.ijrobp.2010.11.030.
[9] 石翔翔,唐涛,陈斌,等. 鼻咽癌调强放疗中腮腺平均吸收剂量预测模型研究[J]. 肿瘤防治研究,2017,44(4):253-256. DOI:10.3971/j.issn.1000-8578.2017.04.003.
Shi X,Tang T,Chen B,et al. Prediction model of parotid mean dose in intensity modulated radiation therapy on nasopharyngeal carcinoma[J]. Cancer Res Prev Treat,2017,44(4):253-256. DOI:10.3971/j.issn.1000-8578.2017.04.003.
[10] Zhu X,Ge Y,Li T,et al. A planning quality evaluation tool for prostate adaptive IMRT based on machine learning[J]. Med Phys,2011,38(2):719-726. DOI:10.1118/1.3539749.
[11] 范嘉伟,王佳舟,胡伟刚. 基于核密度估计的自动计划研究[J]. 中华放射肿瘤学杂志,2017,26(6):661-666. DOI:10.3760/cma.j.issn.1004-4221.2017.06.012.
Fan JW,Wang JZ,Hu WG. A study of automatic treatment planning based on kernel density estimation[J]. Chin J Radiat Oncol,2017,26(6):661-666. DOI:10.3760/cma.j.issn.1004-4221.2017.06.012.
[12] 黄伯天,朱金汉,杨鑫,等. 鼻咽癌IMRT计划腮腺剂量预测模型建立与验证[J]. 中华放射肿瘤学杂志.2016,25(2):160-163. DOI:10.3760/cma.j.issn.1004-4221.2016.02.014.
Huang BT,Zhu JH,Yan X,et al. Development and evaluation of a predicting model of dose volume histograms of parotid in NPC IMRT planning[J]. Chin J Radiat Oncol,2016,25(2):160-163. DOI:10.3760/cma.j.issn.1004-4221.2016.02.014.
[13] 郭跃信,王海洋,刘乐乐,等. 早期非小细胞肺癌不同放疗技术的剂量学差异分析[J]. 中华放射肿瘤学杂志,2017,26(1):62-65. DOI:10.3760/cma.j.issn.1004-4221.2017.01.014.
Guo YX,Wang HY,Liu LL,et al. Analysis of the dosimetry differences between peripheral early stage non-small cell lung cancer (NSCLC) treated with SBRT technique[J]. Chin J Radiat Oncol,2017,26(1):62-65. DOI:10.3760/cma.j.issn.1004-4221.2017.01.014.
[14] Pedregosa F,Gramfort A,Michel V,et al. Scikit-learn:machine learning in python[J]. J Mach Learn Res,2012,12(10):2825-2830. DOI:10.1524/auto.2011.0951.
[15] Appenzoller LM,Michalski JM,Thorstad WL,et al. Predicting dose-volume histograms for organs-at-risk in IMRT planning[J]. Med Phys,2012,39(12):7446-7461. DOI:10.1118/1.4761864.